intrinsic protein fluorescence
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 2 ◽  
Author(s):  
Christopher J. Law

Abstract Proton electrochemical gradient-driven multidrug efflux activity of representatives of the major facilitator superfamily (MFS) of secondary active transporters contributes to antimicrobial resistance of pathogenic bacteria. Integral to the mechanism of these transporters is a proposed competition between substrate and protons for the binding site of the protein. The current work investigated the competition between protons and antimicrobial substrate for binding to the Escherichia coli MFS multidrug/H+ antiporter MdtM by measuring the quench of intrinsic protein fluorescence upon titration of substrate tetraphenylphosphonium into a solution of purified MdtM over a range of pH values between pH 8.8 and 5.9. The results, which revealed that protons inhibit binding of substrate to MdtM in a competitive manner, are consistent with those reported in a study on the related MFS multidrug/H+ antiporter MdfA and provide further evidence that competition for binding between substrate and protons is a general feature of secondary multidrug efflux.


2020 ◽  
Author(s):  
Emilia C. Arturo ◽  
George Merkel ◽  
Michael R. Hansen ◽  
Sophia Lisowski ◽  
Deeanne Almeida ◽  
...  

Phenylalanine hydroxylase (PAH) is an allosteric enzyme responsible for maintaining phenylalanine (Phe) below neurotoxic levels; its failure results in phenylketonuria. Wild type (WT) PAH equilibrates among resting-state (RS-PAH) and activated (A-PAH) conformations, whose equilibrium position depends upon allosteric Phe binding to the A-PAH conformation. The RS-PAH conformation of WT rat PAH (rPAH) contains a cation-π sandwich between Phe80, Arg123, and Arg420, which cannot exist in the A-PAH conformation. Phe80 variants F80A, F80D, F80L, and F80R were prepared; their conformational equilibrium was evaluated using native PAGE, size exclusion chromatography, ion exchange behavior, intrinsic protein fluorescence, enzyme kinetics, and limited proteolysis, each as a function of [Phe]. Like WT rPAH, F80A and F80D show allosteric activation by Phe while F80L and F80R are constitutively active. Maximal activity of all variants suggests relief of a rate-determining conformational change involving Phe80. Limited proteolysis of WT rPAH in the absence of Phe reveals facile cleavage within a C-terminal 4-helix bundle that is buried in the RS-PAH tetramer interface, reflecting dynamic dissociation of the RS-PAH conformation. This cleavage is not seen for the Phe80 variants, which all show proteolytic hypersensitivity in a linker that repositions during the RS-PAH to A-PAH conformational interchange. Hypersensitivity is corrected by addition of Phe such that all Phe80 variants become like WT rPAH and achieve the A-PAH conformation. Thus, manipulation of Phe80 perturbs the conformational space sampled by PAH, increasing the propensity to sample intermediates in the RS-PAH and A-PAH interchange, which are presumed on-pathway because they can readily achieve the A-PAH conformation by addition of Phe.


2020 ◽  
Vol 56 (25) ◽  
pp. 3699-3699
Author(s):  
Jacob M. Goldberg ◽  
Rebecca F. Wissner ◽  
Alyssa M. Klein ◽  
E. James Petersson

Correction for ‘Thioamide quenching of intrinsic protein fluorescence’ by Jacob M. Goldberg et al., Chem. Commun., 2012, 48, 1550–1552.


2019 ◽  
Vol 20 (21) ◽  
pp. 5308 ◽  
Author(s):  
Alexander Bonanno ◽  
Robert C. Blake ◽  
Parkson Lee-Gau Chong

In this study, we used optical spectroscopy to characterize the physical properties of microvesicles released from the thermoacidophilic archaeon Sulfolobus acidocaldarius (Sa-MVs). The most abundant proteins in Sa-MVs are the S-layer proteins, which self-assemble on the vesicle surface forming an array of crystalline structures. Lipids in Sa-MVs are exclusively bipolar tetraethers. We found that when excited at 275 nm, intrinsic protein fluorescence of Sa-MVs at 23 °C has an emission maximum at 303 nm (or 296 nm measured at 75 °C), which is unusually low for protein samples containing multiple tryptophans and tyrosines. In the presence of 10–11 mM of the surfactant n-tetradecyl-β-d-maltoside (TDM), Sa-MVs were disintegrated, the emission maximum of intrinsic protein fluorescence was shifted to 312 nm, and the excitation maximum was changed from 288 nm to 280.5 nm, in conjunction with a significant decrease (>2 times) in excitation band sharpness. These data suggest that most of the fluorescent amino acid residues in native Sa-MVs are in a tightly packed protein matrix and that the S-layer proteins may form J-aggregates. The membranes in Sa-MVs, as well as those of unilamellar vesicles (LUVs) made of the polar lipid fraction E (PLFE) tetraether lipids isolated from S. acidocaldarius (LUVPLFE), LUVs reconstituted from the tetraether lipids extracted from Sa-MVs (LUVMV) and LUVs made of the diester lipids, were investigated using the probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). The generalized polarization (GP) values of Laurdan in tightly packed Sa-MVs, LUVMV, and LUVPLFE were found to be much lower than those obtained from less tightly packed DPPC gel state, which echoes the previous finding that the GP values from tetraether lipid membranes cannot be directly compared with the GP values from diester lipid membranes, due to differences in probe disposition. Laurdan’s GP and red-edge excitation shift (REES) values in Sa-MVs and LUVMV decrease with increasing temperature monotonically with no sign for lipid phase transition. Laurdan’s REES values are high (9.3–18.9 nm) in the tetraether lipid membrane systems (i.e., Sa-MVs, LUVMV and LUVPLFE) and low (0.4–5.0 nm) in diester liposomes. The high REES and low GP values suggest that Laurdan in tetraether lipid membranes, especially in the membrane of Sa-MVs, is in a very motionally restricted environment, bound water molecules and the polar moieties in the tetraether lipid headgroups strongly interact with Laurdan’s excited state dipole moment, and “solvent” reorientation around Laurdan’s chromophore in tetraether lipid membranes occurs very slowly compared to Laurdan’s lifetime.


2017 ◽  
Vol 192 ◽  
pp. 424-427 ◽  
Author(s):  
Regina R. Kayumova ◽  
Aleksandr V. Sultanbaev ◽  
Sergey S. Ostakhov ◽  
Sergey L. Khursan ◽  
Marat F. Abdullin ◽  
...  

2012 ◽  
Vol 48 (10) ◽  
pp. 1550-1552 ◽  
Author(s):  
Jacob M. Goldberg ◽  
Rebecca F. Wissner ◽  
Alyssa M. Klein ◽  
E. James Petersson

Thioamides quench tryptophan and tyrosine fluorescence in a distance-dependent manner and thus can be used to monitor the binding of thioamide-containing peptides to proteins.


Sign in / Sign up

Export Citation Format

Share Document