scholarly journals Fundamental Studies on Rankine Source Panel Method Fully Based on B-splines

2000 ◽  
Vol 2000 (187) ◽  
pp. 13-23 ◽  
Author(s):  
Nikolay E. Markov ◽  
Kazuo Suzuki
Author(s):  
Chang-Sup Lee ◽  
Byoung-Kwon Ahn ◽  
Gun-Do Kim ◽  
Hyun Yup Lee ◽  
Do-Chun Hong

A B-spline based higher order panel method (hereinafter, HiPan) is developed for the motion of bodies in ideal fluid, either of infinite extent or with free boundary surface. In this method, both the geometry and the potential are represented by B-splines, and it guarantees more accurate results than most potential based panel methods. In the present work, we apply the HiPan, which differs with the works at MIT in evaluating the induction integrals, to two major marine hydrodynamic problems: analysis of propulsive performance of the marine propellers and the motion of the floating bodies on the free surface. The present HiPan is shown superior to the constant panel method (hereinafter, CoPan) in predicting flow quantities in the area of the thin trailing edge and blade tip of the propeller. Numerical results are validated by comparison with experimental measurements.


2004 ◽  
Vol 126 (1) ◽  
pp. 1-8 ◽  
Author(s):  
W. Qiu ◽  
J. M. Chuang ◽  
C. C. Hsiung

A panel-free method (PFM) was developed earlier to solve the radiation problem of a floating body in the time domain. In the further development of this method, the diffraction problem has been solved. After removing the singularity in the Rankine source of the Green function and representing the body surface mathematically by Non-Uniform Rational B-Splines (NURBS) surfaces, integral equations were globally discretized over the body surface by Gaussian quadratures. Computed response functions and forces due to diffracted waves for a hemisphere at zero speed were compared with published results.


2002 ◽  
Vol 124 (2) ◽  
pp. 81-89 ◽  
Author(s):  
J. N. Newman ◽  
C.-H. Lee

Boundary-element methods, also known as panel methods, have been widely used for computations of wave loads and other hydrodynamic characteristics associated with the interactions of offshore structures with waves. In the conventional approach, based on the low-order panel method, the submerged surface of the structure is represented by a large number of small quadrilateral plane elements, and the solution for the velocity potential or source strength is approximated by a constant value on each element. In this paper, we describe two recent developments of the panel method. One is a higher-order method where the submerged surface can be represented exactly, or approximated to a high degree of accuracy by B-splines, and the velocity potential is also approximated by B-splines. This technique, which was first used in the research code HIPAN, has now been extended and implemented in WAMIT. In many cases of practical importance, it is now possible to represent the geometry exactly to avoid the extra work required previously to develop panel input files for each structure. It is also possible to combine the same or different structures which are represented in this manner, to analyze multiple-body hydrodynamic interactions. Also described is the pre-corrected Fast Fourier Transform method (pFFT) which can reduce the computational time and required memory of the low-order method by an order of magnitude. In addition to descriptions of the two methods, several different applications are presented.


2008 ◽  
Vol 15 (1) ◽  
pp. 18-23
Author(s):  
Md Shahjada Tarafder ◽  
Gazi M Khalil ◽  
S M Ikhtiar Mahmud

2021 ◽  
Vol 209 ◽  
pp. 107430
Author(s):  
Michael F. Rehme ◽  
Fabian Franzelin ◽  
Dirk Pflüger

Sign in / Sign up

Export Citation Format

Share Document