diffracted waves
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 25)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Ailing Song ◽  
Chaoyu Sun ◽  
Yanxun Xiang ◽  
Fu-Zhen Xuan

Abstract In this paper, we propose a switchable acoustic metagrating composed of periodic grooves for realizing switchable functionalities of three-channel retroreflection and carpet cloaking. The groove parameters are determined by calculating and analyzing the reflectance of different diffracted waves, and only one propagating reflected wave is allowed. Theoretical analysis and numerical simulations are performed to validate the three-channel retroreflection and carpet cloaking performances of the proposed metagrating. Our research work provides a practical and simple method to design acoustic devices with switchable functionalities and simple structure, and has potential applications in practical fields of acoustic sensing and acoustic communication.


Author(s):  
В.Ю. Семенова ◽  
Д.А. Альбаев

В статье рассматривается определение нелинейных сил второго порядка, обусловленных взаимодействием набегающего, дифрагированного волнения и волнения, обусловленного различными видами колебаний на основании применения трехмерной потенциальной теории. Для их определения необходимо вычисление потенциалов второго порядка малости. Представленное решение в отечественной практике является новым. Решение задачи осуществляется на основании методов малого параметра и интегральных уравнений с учетом нелинейного граничного условия на свободной поверхностью жидкости. В работе расчет интегралов по свободной поверхности проводится напрямую за счет их сходимости на бесконечном удалении от судна. Нелинейные силы и моменты определяются в работе с использованием различных функций Грина: для бесконечно-глубокой жидкости и жидкости ограниченной глубины, когда . Полученные результаты практически полностью согласуются между собой. Приводятся результаты расчетов нелинейных сил и моментов для разных судов. Расчеты представлены в сравнении с расчетами по двумерной теории, выполненными также для случая бесконечно глубокой жидкости и жидкости ограниченной глубины при больших значениях отношения глубины к осадке H/T. Показано хорошее согласование результатов между собой в большинстве случаев. Показана возможность расчета нелинейных сил, возникающих при взаимодействии волнения и отдельных видов качки на произвольных курсовых углах. The article considers the definition of nonlinear second-order forces caused by the interaction of incoming, diffracted waves and waves caused by various types of motions based on the application of three-dimensional potential theory. To determine them, it is necessary to calculate the potentials of the second order of smallness. The presented solution is new in domestic practice. The problem is solved on the basis of small parameter methods and integral equations taking into account the nonlinear boundary condition on the free surface of the liquid. The paper shows the possibility of calculating the integrals over the free surface directly due to their convergence at an infinite distance from the ship. Nonlinear forces and moments are determined in the work using various Green's functions: for an infinitely deep fluid and a fluid of limited depth when H → ∞. The results obtained are in almost complete agreement with each other. The results of calculations of nonlinear forces and moments for different ships are presented. The calculations are presented in comparison with the calculations according to the two-dimensional theory, performed also for the case of an infinitely deep liquid and a liquid of limited depth at large values of ratio H / T. A good agreement of the results is shown among themselves in most cases. The possibility of calculating nonlinear forces arising from the interaction of waves and certain types of motions at arbitrary course angles is shown.


Geophysics ◽  
2021 ◽  
pp. 1-49
Author(s):  
Chuangjian Li ◽  
Suping Peng ◽  
Xiaoqin Cui ◽  
Qiannan Liu ◽  
Peng Lin

Diffracted waves provide the opportunity to detect small-scale subsurface structures because they give wide illumination direction of geological discontinuities such as faults, pinch-outs, and collapsed columns. However, separating diffracted waves is challenging because diffracted waves have greater geometrical amplitude losses and are generally weaker than reflections. To retain more diffracted waves, a pre-stack diffraction separation method is proposed based on the local slope pattern and plane-wave destruction method. Generally, it is difficult to distinguish between the hyperbolic reflections and hyperbolic diffractions using the data-driven local slope estimation in the shot domain. Therefore, we transfer the slope estimation in the shot domain to the velocity analysis in the common midpoint domain and the ray parameter calculation in the stack domain. The connection between the local slope and the normal move-out velocity and the surface-ray parameter is known, which provides a novel approach for estimating the local slope of the hyperbolic reflected waves in the shot domain. The estimated slope can provide an exact slope-based operator for the plane-wave destruction (PWD) method, thus allowing the PWD to separate diffracted waves from reflected waves in the shot domain. Synthetic and field data tests demonstrate the feasibility and effectiveness of the proposed pre-stack diffraction separation method.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 303
Author(s):  
Beric Skews

Studies of shock-vortex interactions in the past have predominantly been numerical, with a number of idealizations such as assuming an isolated vortex and a plane shock wave. In the present case the vortex is generated from flow separation at a corner. A shear layer results which wraps up into a spiral vortex. The flow is impulsively initiated by the diffraction of a shock wave over the edge. The strength of the shock determines the nature of the flow at the corner and that induced behind the diffracted wave. A wide variety of cases are considered using different experimental arrangements such as having two independent shock waves arriving at the corner at different times, to reflecting the diffracting wave off different surfaces back into the vortex, and to examining the flow around bends where the reflection off the far wall reflects back onto the vortex. The majority of studies have shown that the vortex normally retains its integrity after shock transit. Some studies with curved shock waves and numerous traverses have shown evidence of vortex breakup and the development of turbulent patches in the flow, as well as significant vortex stretching. Depending on the direction of approach of the shock wave it refracts through the shear layer thereby changing the strength and direction of both. Of particular note is that the two diffracted waves which emerge from the vortex as the incident wave passes through interact with each other resulting in a pressure spike of considerable magnitude. An additional spike is also identified.


Author(s):  
В.Ю. Семенова ◽  
К.И. Баканов

В статье рассматривается определение возмущающих сил и моментов и амплитудно-частотных характеристик возникающих при совместной качке двух судов в условиях мелководья параллельно вертикальной стенке на основании решения трехмерной потенциальной задачи. Определение потенциалов дифрагированного волнения, необходимых для расчетов возмущающих сил, осуществляется на основании методов интегральных уравнений и зеркальных отображений. Представленное решение в отечественной практике является новым. В статье приводятся результаты расчетов возмущающих сил и амплитудно-частотных характеристик поперечно-горизонтальных, вертикальных и бортовых колебаний, возникающих при качке двух одинаковых судов, расположенных лагом к волнению и параллельно вертикальной стенке в зависимости от изменения расстояний как между судами, так и между судами и вертикальной стенкой. Проводится исследование влияния различных фарватеров на величины возмущающих сил и амплитудно-частотных характеристик, а именно: мелководного фарватера, мелководного фарватера с вертикальной стенкой, мелководного фарватера со вторым параллельно качающимся судном и мелководного фарватера с вертикальной стенкой и вторым судном. Таким образом, в работе учитывается одновременное влияния мелководья, вертикальной стенки и второго судна. Показано увеличение значений возмущающих сил при уменьшении расстояний между судами и между судами и вертикальной стенкой. Также показано значительное совместное влияние вертикальной стенки и второго судна на амплитудно-частотные характеристики по сравнению со случаем качки судна на мелководье. The article discusses the determination of the exciting forces and moments and amplitude-frequency characteristics arising from the coupled motions of two ships in shallow water conditions parallel to the vertical wall based on the solution of a three-dimensional potential problem. The determination of the potentials of diffracted waves, necessary for calculating the exciting forces, is carried out on the basis of the methods of integral equations and mirror images. The presented solution is new in domestic practice. The article presents the results of calculations of exciting forces and amplitude-frequency characteristics of swaying, heaving and rolling arising from the motions of two identical ships located in the beam waves and parallel to the vertical wall, depending on the change in the distances both between ships and between ships and vertical wall. A study of the influence of various waterways on the magnitude of exciting forces and amplitude-frequency characteristics is being carried out, namely: a shallow waterway, a shallow waterway with a vertical wall, a shallow waterway with a second parallel oscillating ship and a shallow waterway with a vertical wall and a second ship. Thus, the work takes into account the simultaneous influence of shallow water, vertical wall and the second ship. An increase in the values ​​of the exciting forces is shown with a decrease in the distances between ships and between ships and the vertical wall. A significant joint effect of the vertical wall and the second ship on the amplitude-frequency characteristics is also shown in comparison with the case of the ship oscillating in shallow water.


2021 ◽  
Vol 13 (1) ◽  
pp. 71-78
Author(s):  
Maxim V. Muratov ◽  
◽  
Polina V. Stognii ◽  
Igor B. Petrov ◽  
Alexey A. Anisimov ◽  
...  

The article is devoted to the study of the propagation of elastic waves in a fractured seismic medium by methods of mathematical modeling. The results obtained during it are compared with the results of physical modeling on similar models. For mathematical modeling, the grid-characteristic method with hybrid schemes of 1-3 orders with approximation on structural rectangular grids is used. The ability to specify inhomogeneities (fractures) of various complex shapes and spatial orientations has been implemented. The description of the developed mathematical models of fractures, which can be used for the numerical solution of exploration seismology problems, is given. The developed models are based on the concept of an infinitely thin fracture, the size of the opening of which does not affect the wave processes in the fracture area. In this model, fractures are represented by boundaries and contact boundaries with different conditions on their surfaces. This approach significantly reduces the need for computational resources by eliminating the need to define a mesh inside the fracture. On the other hand, it allows you to specify in detail the shape of fractures in the integration domain, therefore, using the considered approach, one can observe qualitatively new effects, such as the formation of diffracted waves and a multiphase wavefront due to multiple reflections between the surfaces, which are inaccessible for observation when using effective fracture models actively used in computational seismic. The obtained results of mathematical modeling were verified by physical modeling methods, and a good agreement was obtained.


Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Itay Rochlin ◽  
Evgeny Landa ◽  
Shemer Keydar

Detection and imaging of sub-wavelength features in the subsurface using diffracted waves are rapidly gaining momentum in the oil and gas industry as well as in the fields of engineering, archeology, and homeland security. Most of the proposed methods include coherent summation of the recorded wavefield along diffraction traveltime surfaces from point scatterers. The summation focuses energy onto point-like diffractors which appear at the resulting images as prominent anomalies. However, in cases when the target is an elongated object such as a fault plane, fracture, tunnel, or elongated cave, a more efficient imaging method can be constructed. We present an algorithm for detecting and characterizing linear subsurface elements using a linear diffractor operator. The proposed algorithm is based on the coherent summation of the edge diffraction generated by the entire lineament and on the analysis of the calculated coherence measure (semblance). The advantages and limitations of the proposed method are demonstrated, and the results are compared to the conventional point-diffractor-based techniques. Synthetic and real data examples demonstrate that using a linear-diffractor-based algorithm can dramatically improve the detection of linear objects.


2021 ◽  
pp. 57-90
Author(s):  
P. A. Ryazantsev

The article considers the role of GPR in solving problems of soil science, as well as the accuracy of tracking soil horizons using the example of field data. The study of the current state of the issue has shown that there is significant variability in the electrophysical properties of different types of soil. In this case, the dielectric constant of the soil horizons can both increase and decrease with depth. This fact determines the need for parameterization of the soil profile in GPR studies to prevent errors. Based on a generalizing analysis of practical examples, it has been established that the error in determining individual soil horizons by a GPR is on average 2–10 cm, depending on the frequency of the GPR antenna and the structural features of the soil. Experimental and methodological work to substantiate the main conclusions was carried out to trace the soil horizons by the GPR method using the example of typical entic podzol located on the Zaonezhsky Peninsula (Republic of Karelia), the structure and composition of which were described in detail earlier. The survey was carried out by a georadar OKO-2 (Logis-Geotech, Russia) with an antenna unit with a central frequency of 400 MHz. Fieldwork on the study site was carried out along separate transects, according to the reference soil profile. A detailed analysis of the radargrams provided, first of all, tracking the base of the BC horizon. The results obtained showed that the thickness of the soil within the profile varies from 23 to 32 cm, and the average observation error was ± 3 cm. Besides, the influence on the recording of shungite shale fragments and the differentiation of moisture content in the soil horizons was revealed. The presence of shungite shale leads to the formation of diffracted waves and an increase in the amplitudes of the reflected signal, while an increase in humidity is characterized by a decrease in the velocities of the electromagnetic wave.


Author(s):  
Anke Song ◽  
Yuanlang Cai ◽  
Xiaolong Yang

Abstract This paper addresses the nonlinear amplifications in the upwelling crests of air gap responses from the wave basin model test of a deep draft semi-submersible in extreme wave condition. Contributions from nonlinear incident waves, vessel motions and wave-body interactions are analyzed separately. Results from the analyses suggest that, nonlinear amplification factors are larger than predictions from second order corrected model for incident and diffracted waves. Low frequency roll and pitch motions will induce larger nonlinear negative vertical motions for points in down-wave area, thus worsen air gap performance. Upwellings are highly related to diffracted wave elevations. Local run-ups due to highly nonlinear wave-body interactions around column walls could result in the nonlinear amplification factors in this area to be up to 230%.


2020 ◽  
Vol 17 (5) ◽  
pp. 1259-1271
Author(s):  
Hong-Yan Shen ◽  
Qin Li ◽  
Yue-Ying Yan ◽  
Xin-Xin Li ◽  
Jing Zhao

Abstract Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones. However, the energy of diffracted waves is weaker than that of reflections. Therefore, the extraction of diffracted waves is the basis for the effective utilization of diffracted waves. Based on the difference in travel times between diffracted and reflected waves, we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging. The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out (NMO) correction. Then, a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence. Following, separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO. Synthetic and field examples show that our proposed method has the advantages of fewer constraints, fast processing speed and complete extraction of diffracted waves. And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones.


Sign in / Sign up

Export Citation Format

Share Document