scholarly journals Computer synthesis of diffractive optical elements for forming 3D images

Author(s):  
С.Р. Дурлевич

Предложен метод расчета и синтеза микрорельефа дифракционного оптического элемента, формирующего новый визуальный защитный признак - эффект смены одного 3D-изображения на другое 3D-изображение при повороте дифракционного оптического элемента на 90 градусов. Разработаны эффективные алгоритмы расчета микрорельефа дифракционного оптического элемента. Методами математического моделирования определены оптимальные параметры дифракционного оптического элемента. С помощью электронно-лучевой технологии изготовлены образцы оптических защитных элементов, формирующих визуальный эффект смены 3D-изображений при освещении оптического элемента белым светом. Разработанные оптические элементы могут тиражироваться с помощью стандартного оборудования, используемого для изготовления защитных голограмм. Новый защитный признак легко контролируется визуально, надежно защищен от подделки и предназначен для защиты банкнот, документов, идентификационных карт и др. A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature: alternation of two 3D color images when the diffractive element is rotated by 90 degrees. Effective algorithms for computing the micro-relief of an optical element are developed. Optimal parameters of the diffractive optical element are determined using methods of mathematical modeling. Sample optical security elements that produce 3D to 3D visual switch effect when illuminated by white light were manufactured using the electron-beam lithography. The optical elements developed can be replicated using a standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Goncharsky ◽  
Anton Goncharsky ◽  
Dmitry Melnik ◽  
Svyatoslav Durlevich

AbstractThis paper focuses on the development of flat diffractive optical elements (DOEs) for protecting banknotes, documents, plastic cards, and securities against counterfeiting. A DOE is a flat diffractive element whose microrelief, when illuminated by white light, forms a visual image consisting of several symbols (digits or letters), which move across the optical element when tilted. The images formed by these elements are asymmetric with respect to the zero order. To form these images, the microrelief of a DOE must itself be asymmetric. The microrelief has a depth of ~ 0.3 microns and is shaped with an accuracy of ~ 10–15 nm using electron-beam lithography. The DOEs developed in this work are securely protected against counterfeiting and can be replicated hundreds of millions of times using standard equipment meant for the mass production of relief holograms.


2015 ◽  
Vol 23 (22) ◽  
pp. 29184 ◽  
Author(s):  
Alexander Goncharsky ◽  
Anton Goncharsky ◽  
Svyatoslav Durlevich

Author(s):  
А.А. Гончарский ◽  
С.Ю. Серёжников

В рамках широко распространенной технологии Augmented Reality обсуждается возможность контроля подлинности защитных оптических меток на основе бинарных нанооптических элементов. С помощью смартфона фотографируют изображение защитной метки. Полученное изображение интерпретируется как дифракционный оптический элемент. В приближении Френеля рассчитывают изображение, формируемое дифракционным оптическим элементом, которое используют для идентификации подлинности защитной метки. Защитная метка представляет собой фазовый оптический элемент, глубина микрорельефа которого не превышает 0.5 мкм. Нанооптические элементы изготавливаются с помощью электроннолучевой литографии. Разработанные нанооптические элементы устойчивы к частичному повреждению микрорельефа и могут быть использованы для идентификации банкнот, документов и др. This paper deals with optical security label identification technology as a part of augmented reality technology. Security labels are based on binary nanooptical elements and are photographed using a smartphone. Photographed images are interpreted as diffractive optical elements. Optical images formed by these diffractive elements are computed using the Fresnel approximation. These images are used to identify the security labels. A security label consists of a phase optical element whose microrelief height is of no more than 0.5 $\mu$m. Nanooptical elements are manufactured using electron-beam lithography. The optical security labels are resistant against microrelief damages and can withstand partial loss of an image. The optical elements developed can be used to protect and identify banknotes, documents, etc.


2021 ◽  
Vol 8 ◽  
pp. 223-228
Author(s):  
Ruslan V. Shimansky ◽  
Andrey Yu. Kostyanichnikov ◽  
Roman I. Kuts ◽  
Dmitriy A. Belousov ◽  
Victor P. Korolkov

The work is devoted to an experimental study of the effectiveness of the method for measuring errors in manufacturing of computer-generated synthesized holograms using specialized marks. Each mark represents two aligned diffraction gratings with the same duty cycle and period, the first of which is formed before writing, and the second is formed in the process of forming the structure of the hologram. To determine the writing error, the method of optical diffractometry was used. The results of an experimental study of dependence of diffraction efficiency of the mark on the mutual displacement of parts of the microgratings are presented. The error manufacturing of a synthesized hologram arising during long-term writing of a diffractive optical element has been simulated experimentally.


Author(s):  
Simran Agarwal ◽  
Romuald Jolivot ◽  
Waleed S. Mohammed

In the recent years, many different techniques and algorithms have been devised to design diffractive optical elements (DOE’s) for the purpose of beam shaping. This paper demonstrates an approach to realise a 3-D printed radial phase mask to be used in beam shaping to achieve a beam profile closer to the flattop. An iterative algorithm approach is employed to simulate the phase masks in greyscale and subsequently into STL format. These 3-D printed masks are used as an optical element and characterised using an experimental setup. The images of the light after the characterisation are examined and compared with the simulated results. Therefore, this method reduces the complexity as 3-D printing the masks eliminates the need for fabrication, processing time and number of components necessary to obtain a flattop beam profile.


2015 ◽  
Vol 743 ◽  
pp. 800-807 ◽  
Author(s):  
S.Z. Nie ◽  
J. Yu ◽  
Y. Liu ◽  
Z.W. Fan

The modified Gerchberg-Saxton (G-S) methods of diffractive optical elements are presented for converting a Gaussian beam into a flat-top beam. The sample points of the input and output planes are discussed based on the sampling principle. The relationship between weighting factor, empirical constant, diffractive efficiency, and intensity uniformity is investigated. The simulation results of different modified methods are calculated when the incident beams are the same. The results show that the intensity uniformity of the output flat-top beam is the best when using the ST modified method.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Reut Orange-Kedem ◽  
Elias Nehme ◽  
Lucien E. Weiss ◽  
Boris Ferdman ◽  
Onit Alalouf ◽  
...  

AbstractDiffractive optical elements (DOEs) are used to shape the wavefront of incident light. This can be used to generate practically any pattern of interest, albeit with varying efficiency. A fundamental challenge associated with DOEs comes from the nanoscale-precision requirements for their fabrication. Here we demonstrate a method to controllably scale up the relevant feature dimensions of a device from tens-of-nanometers to tens-of-microns by immersing the DOEs in a near-index-matched solution. This makes it possible to utilize modern 3D-printing technologies for fabrication, thereby significantly simplifying the production of DOEs and decreasing costs by orders of magnitude, without hindering performance. We demonstrate the tunability of our design for varying experimental conditions, and the suitability of this approach to ultrasensitive applications by localizing the 3D positions of single molecules in cells using our microscale fabricated optical element to modify the point-spread-function (PSF) of a microscope.


2021 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Mateusz Surma ◽  
Mateusz Kaluza ◽  
Patrycja Czerwińska ◽  
Paweł Komorowski ◽  
Agnieszka Siemion

Terahertz (THz) optics often encounters the problem of small f number values (elements have relatively small diameters comparing to focal lengths). The need to redirect the THz beam out of the optical axis or form particular intensity distributions resulted in the application of iterative holographic methods to design THz diffractive elements. Elements working on-axis do not encounter significant improvement while using iterative holographic methods, however, for more complicated distributions the difference becomes meaningful. Here, we propose a totally different approach to design THz holograms, utilizing a neural network based algorithm, suitable also for complicated distributions. Full Text: PDF ReferencesY. Tao, A. Fitzgerald and V. Wallace, "Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology", Sensors, 20(3), 712 (2020). CrossRef J. O'Hara, S. Ekin, W. Choi and I. Song, "A Perspective on Terahertz Next-Generation Wireless Communications", Technologies, 7(2), 43 (2019). CrossRef L. Yu et al., "The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges", RSC Advances, 9(17), 9354 (2019). CrossRef A. Siemion, "The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements", Sensors, 21(1), 100 (2020). CrossRef A. Siemion, "Terahertz Diffractive Optics—Smart Control over Radiation", J. Infrared Millim. Terahertz Waves, 40(5), 477 (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek and A. Siemion, "Sub-Terahertz Computer Generated Hologram with Two Image Planes", Appl. Sci., 9(4), 659 (2019). CrossRef S. Banerji and B.Sensale-Rodriguez, "A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements", Sci. Rep., 9(1), 5801 (2019). CrossRef J. Sun and F. Hu, "Three-dimensional printing technologies for terahertz applications: A review", Int. J. RF. Microw. C. E., 30(1) (2020). CrossRef E. Castro-Camus, M. Koch and A. I. Hernandez-Serrano, "Additive manufacture of photonic components for the terahertz band", J. Appl. Phys., 127(21), 210901 (2020). CrossRef https://community.wolfram.com/groups/-/m/t/2028026?p_%20479%20p_auth=blBtLb5d DirectLink P. Komorowski, et al., "Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach", Opt. Express, 29(7), 11243-11253 (2021) CrossRef M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Commun., 116(1-3), 43 (1995). CrossRef


2016 ◽  
Vol 24 (9) ◽  
pp. 9140 ◽  
Author(s):  
Alexander Goncharsky ◽  
Anton Goncharsky ◽  
Svyatoslav Durlevich

Sign in / Sign up

Export Citation Format

Share Document