scholarly journals Modes of magnetic field generation in the low-mode αΩ-dynamo model with dynamic regulation of the α-effect by the field energy

Author(s):  
О.В. Шереметьева

В работе используется маломодовая модель αΩ-динамо для моделирования режимов генерации магнитного поля при незначительных изменениях поля скорости вязкой жидкости. В рамках этой модели интенсивность α-эффекта регулируется процессом с памятью, который вводится в магнитогидродинамическую систему (МГД-система) как аддитивная поправка в виде функционала Z(t) от энергии поля. В качестве ядра J(t) функционала Z(t) выбрана функция, определяющая затухающие колебания с варьируемым коэффициентом затухания и постоянной частотой затухания, принятой равной единице. Исследование поведения магнитного поля проводится на больших временных масштабах, поэтому для численных расчётов используется перемасштабированная и обезразмеренная МГД-система, где в качестве единицы времени принято время диссипации магнитного поля (104 лет). Управляющими параметрами системы выступают число Рейнольдса и амплитуда α-эффекта, в которых заложена информация о крупномасштабном и турбулентном генераторах. Результаты численного моделирования режимов генерации магнитного поля при различных значениях коэффициента затухания и постоянной частоте затухания отражены на фазовой плоскости управляющих параметров. В работе исследуется вопрос о динамике изменения картины на фазовой плоскости в зависимости от значения коэффициента затухания. Проводится сравнение с результатами, полученными ранее при постоянной интенсивности α-эффекта и при изменении интенсивности α — эффекта, которое определялось функционалом Z(t) с показательным ядром и аналогичными значениями коэффициента затухания. In this paper, we use a low-mode αΩ-dynamo model to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. Within the framework of this model, an additive correction is introduced into the magnetohydrodynamic system to control the intensity of the α-effect in the form of a function Z(t) from the field energy. As the kernel J(t) of the function Z(t) is chosen the function that determines damped oscillations with the different values of the damping coefficient and a constant damping frequency taken equal to one. The study of the magnetic field behavior is carried out on a large time scales, therefore, for numerical calculations, a rescaled and dimensionless MHD-system is used, where the time of the magnetic field dissipation (104 years) is accepted as the unit of time. The main parameters of the system are the Reynolds number and the amplitude of the α-effect, which contains information about the large-scale and turbulent generators, respectively. According to the results of numerical simulation, an increase in the values of the damping coefficient is characterized an increase in the inhibition effect of the process Z(t) on the α-effect and decrease of the magnetic field divergence region on the plane of the main parameters.

2021 ◽  
Vol 254 ◽  
pp. 02015
Author(s):  
Olga V. Sheremetyeva ◽  
Anna N. Godomskaya

The low-mode model αΩ-dynamo is used in this paper to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. In the framework of those model the α-effect intensity is regulated by the process that is included in the magnetohydrodynamic system (MHD-system) as an additive correction as a functional Z(t) depended on the magnetic field energy. Function that determines damped oscillations with variable damping frequency and constant damping coefficient, taken equal to one, is selected as kernel J(t) of functional Z(t). The research of the behavior of the magnetic field is carried out on large time scales, therefore, a rescaled and dimensionless MHD-system with the unit of time iquel the time of the magnetic field dissipation (104 years) for numerical calculations is used. The control parameters of the system are the Reynolds number and the amplitude of the α-effect, that include information about the large-scale and turbulent generators, respectively. Numerical simulation of the magnetic field generation modes was carried out for the values of the damping coefficient b = 1 and frequency a = 0.1, 0.5, 1, 5, 10. According to the results of numerical simulation, an increase in the values of the damping frequency, when the damping coefficient is equal to one, is characterized by a decrease in the inhibitory effect of the process Z(t) on the α-effect and an increase in the region of divergence of the magnetic field on the phase plane of the control parameters. In a comparative analysis with the results of the authors’ work, where the change of the α-effect intensity was determined by the function Z(t) with an exponential kernel and the same value of the damping coefficient, the following differences were noted: an increase in oscillations in both a magnetic and a velocity fields, the appearance of a chaotic regime of magnetic field generation at the value of the damping frequency equal to one, and also insignificant narrowing of the region of α-effect suppression at values of the damping frequency increasing to one.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2016 ◽  
Vol 12 (S324) ◽  
pp. 62-65
Author(s):  
Mikhail Garasev ◽  
Evgeny Derishev

AbstractWe present the results of numerical particle-in-cell (PIC) simulations of the magnetic field generation and decay in the upstream of collisionless shocks. We use the model, where the magnetic field in the incoming flow is generated by continuous injection of anisotropic electron-positron pairs. We found that the continuous injection of anisotropic plasma in the upstream of the shock-wave generates the large-scale, slowly decaying magnetic field that is later amplified during the passage of the shock front. In our simulations the magnetic field energy reached ~0.01 of the equipartition value, after that it slowly decays on the time scale proportional to the duration of the injection in the upstream. Thus, the magnetic field survives for a sufficiently long time, and supports efficient synchrotron radiation from relativistic shocks, e.g., in GRBs.


Author(s):  
А.Н. Годомская ◽  
О.В. Шереметьева

В динамической модели -динамо с переменной интенсивностью -генератора моделируются инверсии магнитного поля. Изменение интенсивности -генератора как следствие синхронизации высших мод поля скоростей и магнитного поля регулируется функцией Z(t) со степенным ядром. Получены режимы динамо для двух видов радиальной составляющей в скалярной параметризации -эффекта. Проведён анализ результатов в зависимости от изменения показателя степени ядра функции Z(t), а также сравнительный анализ с результатами исследования 10, где использовано показательное ядро функциии Z(t). In the dynamic model -dimensions are simulated reversions of the magnetic field with a varying intensity of the -generator. The change of the -generator intensity as a result of synchronization of higher modes of the velocity field and the magnetic field is regulated by a function Z(t) with a power kernel. Dynamo modes are obtained for two types of radial component in the scalar parameterization of the -effect. The results were analyzed depending on the change in the exponent of the kernel of the function Z(t), also a comparative analysis with the results of the study 10, where the exponential kernel of the function Z(t) was used.


2004 ◽  
Vol 330 (5) ◽  
pp. 384-389 ◽  
Author(s):  
Jun-Ichi Sakai ◽  
Reinhard Schlickeiser ◽  
P.K. Shukla

Author(s):  
Zhe Zhang ◽  
Baojun Zhu ◽  
Yutong Li ◽  
Weiman Jiang ◽  
Dawei Yuan ◽  
...  

As a promising new way to generate a controllable strong magnetic field, laser-driven magnetic coils have attracted interest in many research fields. In 2013, a kilotesla level magnetic field was achieved at the Gekko XII laser facility with a capacitor–coil target. A similar approach has been adopted in a number of laboratories, with a variety of targets of different shapes. The peak strength of the magnetic field varies from a few tesla to kilotesla, with different spatio-temporal ranges. The differences are determined by the target geometry and the parameters of the incident laser. Here we present a review of the results of recent experimental studies of laser-driven magnetic field generation, as well as a discussion of the diagnostic techniques required for such rapidly changing magnetic fields. As an extension of the magnetic field generation, some applications are discussed.


2019 ◽  
Vol 127 ◽  
pp. 02016 ◽  
Author(s):  
Anna Godomskaya ◽  
Olga Sheremetyeva

In the dynamic model αΩ-dimensions are simulated reversions of the magnetic field with a varying intensity of the α-generator. The change of the α-generator intensity as a result of synchronization of higher modes of the velocity field and the magnetic field is regulated by a function Z(t) with a power kernel. Dynamo modes are obtained for two types of radial component in the scalar parameterization of the α-effect. The results were analyzed depending on the change in the exponent of the kernel of the function Z(t) and the type of the power kernel, also a comparative analysis with the results of the study [9], where the exponential kernel of the function Z(t) was used.


Sign in / Sign up

Export Citation Format

Share Document