scholarly journals Generation and decay of the magnetic field in collisionless shocks

2016 ◽  
Vol 12 (S324) ◽  
pp. 62-65
Author(s):  
Mikhail Garasev ◽  
Evgeny Derishev

AbstractWe present the results of numerical particle-in-cell (PIC) simulations of the magnetic field generation and decay in the upstream of collisionless shocks. We use the model, where the magnetic field in the incoming flow is generated by continuous injection of anisotropic electron-positron pairs. We found that the continuous injection of anisotropic plasma in the upstream of the shock-wave generates the large-scale, slowly decaying magnetic field that is later amplified during the passage of the shock front. In our simulations the magnetic field energy reached ~0.01 of the equipartition value, after that it slowly decays on the time scale proportional to the duration of the injection in the upstream. Thus, the magnetic field survives for a sufficiently long time, and supports efficient synchrotron radiation from relativistic shocks, e.g., in GRBs.

2021 ◽  
Vol 254 ◽  
pp. 02015
Author(s):  
Olga V. Sheremetyeva ◽  
Anna N. Godomskaya

The low-mode model αΩ-dynamo is used in this paper to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. In the framework of those model the α-effect intensity is regulated by the process that is included in the magnetohydrodynamic system (MHD-system) as an additive correction as a functional Z(t) depended on the magnetic field energy. Function that determines damped oscillations with variable damping frequency and constant damping coefficient, taken equal to one, is selected as kernel J(t) of functional Z(t). The research of the behavior of the magnetic field is carried out on large time scales, therefore, a rescaled and dimensionless MHD-system with the unit of time iquel the time of the magnetic field dissipation (104 years) for numerical calculations is used. The control parameters of the system are the Reynolds number and the amplitude of the α-effect, that include information about the large-scale and turbulent generators, respectively. Numerical simulation of the magnetic field generation modes was carried out for the values of the damping coefficient b = 1 and frequency a = 0.1, 0.5, 1, 5, 10. According to the results of numerical simulation, an increase in the values of the damping frequency, when the damping coefficient is equal to one, is characterized by a decrease in the inhibitory effect of the process Z(t) on the α-effect and an increase in the region of divergence of the magnetic field on the phase plane of the control parameters. In a comparative analysis with the results of the authors’ work, where the change of the α-effect intensity was determined by the function Z(t) with an exponential kernel and the same value of the damping coefficient, the following differences were noted: an increase in oscillations in both a magnetic and a velocity fields, the appearance of a chaotic regime of magnetic field generation at the value of the damping frequency equal to one, and also insignificant narrowing of the region of α-effect suppression at values of the damping frequency increasing to one.


Author(s):  
О.В. Шереметьева

В работе используется маломодовая модель αΩ-динамо для моделирования режимов генерации магнитного поля при незначительных изменениях поля скорости вязкой жидкости. В рамках этой модели интенсивность α-эффекта регулируется процессом с памятью, который вводится в магнитогидродинамическую систему (МГД-система) как аддитивная поправка в виде функционала Z(t) от энергии поля. В качестве ядра J(t) функционала Z(t) выбрана функция, определяющая затухающие колебания с варьируемым коэффициентом затухания и постоянной частотой затухания, принятой равной единице. Исследование поведения магнитного поля проводится на больших временных масштабах, поэтому для численных расчётов используется перемасштабированная и обезразмеренная МГД-система, где в качестве единицы времени принято время диссипации магнитного поля (104 лет). Управляющими параметрами системы выступают число Рейнольдса и амплитуда α-эффекта, в которых заложена информация о крупномасштабном и турбулентном генераторах. Результаты численного моделирования режимов генерации магнитного поля при различных значениях коэффициента затухания и постоянной частоте затухания отражены на фазовой плоскости управляющих параметров. В работе исследуется вопрос о динамике изменения картины на фазовой плоскости в зависимости от значения коэффициента затухания. Проводится сравнение с результатами, полученными ранее при постоянной интенсивности α-эффекта и при изменении интенсивности α — эффекта, которое определялось функционалом Z(t) с показательным ядром и аналогичными значениями коэффициента затухания. In this paper, we use a low-mode αΩ-dynamo model to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. Within the framework of this model, an additive correction is introduced into the magnetohydrodynamic system to control the intensity of the α-effect in the form of a function Z(t) from the field energy. As the kernel J(t) of the function Z(t) is chosen the function that determines damped oscillations with the different values of the damping coefficient and a constant damping frequency taken equal to one. The study of the magnetic field behavior is carried out on a large time scales, therefore, for numerical calculations, a rescaled and dimensionless MHD-system is used, where the time of the magnetic field dissipation (104 years) is accepted as the unit of time. The main parameters of the system are the Reynolds number and the amplitude of the α-effect, which contains information about the large-scale and turbulent generators, respectively. According to the results of numerical simulation, an increase in the values of the damping coefficient is characterized an increase in the inhibition effect of the process Z(t) on the α-effect and decrease of the magnetic field divergence region on the plane of the main parameters.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1990 ◽  
Vol 140 ◽  
pp. 159-162
Author(s):  
V.G. Berman ◽  
L.S. Marochnik ◽  
Yu.N. Mishurov ◽  
A.A. Suchkov

We show that large–scale motions of the interstellar gas, such as those associated with galactic density waves, easily develop, over a wide range of scales, shocks and discontinuities which are expected to generate turbulence. The latter is supposed to evoke diffusion of magnetic fields and cosmic rays on scales down to a few parsecs. We suggest that these processes may be of major importance in discussions of interconnections between the observed radio emission of the disks of spiral galaxies and the gas density distribution within them. In particular, we predict that the density of cosmic rays and magnetic field energy must be much less contrasted (on scales of ~1 pc and up to the scales of galactic shocks) than the gas density, hence the synchrotron radio emission is not as contrasted as is predicted under the hypothesis of a fully frozen-in magnetic field.


2013 ◽  
Vol 28 (36) ◽  
pp. 1350138 ◽  
Author(s):  
ZHI FU GAO ◽  
NA WANG ◽  
QIU HE PENG ◽  
XIANG DONG LI ◽  
YUAN JIE DU

Based on our previous work, we deduce a general formula for pressure of degenerate and relativistic electrons, Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynamic (QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows: Pe is related to the magnetic field B, matter density ρ, and electron fraction Ye; the stronger the magnetic field, the higher the electron pressure becomes; the high electron pressure could be caused by high Fermi energy of electrons in a superhigh magnetic field; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star (NS) due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EOS of the star.


Author(s):  
Y. J. Gu ◽  
Q. Yu ◽  
O. Klimo ◽  
T. Zh. Esirkepov ◽  
S. V. Bulanov ◽  
...  

Fast magnetic field annihilation in a collisionless plasma is induced by using TEM(1,0) laser pulse. The magnetic quadrupole structure formation, expansion and annihilation stages are demonstrated with 2.5-dimensional particle-in-cell simulations. The magnetic field energy is converted to the electric field and accelerate the particles inside the annihilation plane. A bunch of high energy electrons moving backwards is detected in the current sheet. The strong displacement current is the dominant contribution which induces the longitudinal inductive electric field.


Author(s):  
Shinichi Ishiguri

We previously reported new superconductivity produced by an electrostatic field and a diffusion current in a semiconductor without refrigeration. In particular, the superconductivity was investigated theoretically and confirmed experimentally. Here, we determine that the derived superconducting quantum state can be reproduced in a capacitor. When circuits are formed with this new-type capacitor and diodes, a magnetic field is applied to the diodes’ depletion layer. The depletion layer is biased because of the conversion from the magnetic-field energy to electric-field energy, resulting in the diodes’ spontaneously emitting a current. Thus, the new-type capacitor is charged using no other energy source. This new phenomenon is described theoretically with assistance of initial experiments.


2013 ◽  
Vol 717 ◽  
pp. 395-416 ◽  
Author(s):  
D. W. Hughes ◽  
M. R. E. Proctor

AbstractRecent numerical simulations of dynamo action resulting from rotating convection have revealed some serious problems in applying the standard picture of mean field electrodynamics at high values of the magnetic Reynolds number, and have thereby underlined the difficulties in large-scale magnetic field generation in this regime. Here we consider kinematic dynamo processes in a rotating convective layer of Boussinesq fluid with the additional influence of a large-scale horizontal velocity shear. Incorporating the shear flow enhances the dynamo growth rate and also leads to the generation of significant magnetic fields on large scales. By the technique of spectral filtering, we analyse the modes in the velocity that are principally responsible for dynamo action, and show that the magnetic field resulting from the full flow relies crucially on a range of scales in the velocity field. Filtering the flow to provide a true separation of scales between the shear and the convective flow also leads to dynamo action; however, the magnetic field in this case has a very different structure from that generated by the full velocity field. We also show that the nature of the dynamo action is broadly similar irrespective of whether the flow in the absence of shear can support dynamo action.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yan-Jun Gu ◽  
Sergei V. Bulanov

Abstract Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas, where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions. The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic reconnection research are presented.


Sign in / Sign up

Export Citation Format

Share Document