Optimization of Ultrafine Self-Nanoemulsifying Drug Delivery System Using Box-Behnken Design for Enhancing Oral Bioavailability of Atorvastatin Calcium

Author(s):  
Hany Ibrahim
Author(s):  
Tran Thi Hai Yen ◽  
Nguyen Thi Yen ◽  
Nguyen Canh Hung ◽  
Phan Thi Nghia ◽  
Pham Bao Tung ◽  
...  

This study aims to solidify the self-nanoemulsifying drug delivery system with rosuvastatin (SNEDDS Ros) for application in solid dosage forms. The liquid SNEDDS Ros system is solidified by granulation and spray drying methods. Solid SNEDDS Ros was evaluated on the drug content, the Carr index, nanoemulsification efficiency and several criteria of nanoemulsion, formed after emulsification of solid SNEDDS Ros, such as droplet size, polydispersion index (PDI), the drug proportion in the oil phase. The study results show that solid SNEDDS Ros, prepared by granulation method using Prosolv SMCC 90 as an adsorbent, had good flowability with the Carr index of about 15. The nanoemulsion, obtained after emulsification of the solid SNEDDS, had an average particle size of 15 nm, PDI less than 0.2, drug nanoemulsified efficiency of 94 % and drug proportion in the oil phase of 84%. Keywords Rosuvastatin, SNEDDS, Solid SNEDDS, solidification. References [1] A.G. Olsson, F. McTaggart, and A. Raza, Rosuvastatin: A Highly Effective New HMG-CoA Reductase Inhibitor. Cardiovasc. Drug Rev., 20 (2006) 303–328. https://doi.org/10.1111/j.1527-3466.2002.tb00099.x[2] A.M. Kassem, H.M. Ibrahim, and A.M. Samy, Development and optimisation of atorvastatin calcium loaded self-nanoemulsifying drug delivery system (SNEDDS) for enhancing oral bioavailability: in vitro and in vivo evaluation. J. Microencapsul 34 (2017) 319–333. https://doi.org/10.1080/02652048.2017.1328464[3] M.N. Ahsan and P.R. Prasad Verma, Solidified self nano-emulsifying drug delivery system of rosuvastatin calcium to treat diet-induced hyperlipidemia in rat: in vitro and in vivo evaluations. Ther. Deliv 8 (2017) 125–136. https://doi.org/10.4155/tde-2016-0071[4] S. Verma, S.K. Singh, P. R. P. Verma, and M. N. Ahsan, Formulation by design of felodipine loaded liquid and solid self nanoemulsifying drug delivery systems using Box-Behnken design. Drug Dev. Ind. Pharm. 40 (2014) 1358–1370. https://doi.org/10.3109/03639045.2013.819884[5] M.S. Reddy, Formulation and In Vitro Characterization of Solid-self Nanoemulsifying Drug Delivery System of Atorvastatin Calcium. Asian J. Pharm. 11 (2018) 991-999. https://dx.doi.org/10.22377/ajp.v11i04.1771.[6] N. Kulkarni, N. Ranpise, and G. Mohan, Development and evaluation of solid self nano-emulsifying formulation of rosuvastatin calcium for improved bioavailability. Trop. J. Pharm. Res. 14 (2015) 575–582. https://doi.org/10.4314/tjpr.v14i4.3[7] A.O. Kamel and A.A. Mahmoud, Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. J. Biomed. Nanotechnol. 9 (2013) 26–39. https://doi.org 10.1166/jbn.2013.1469.[8] H.A. Abo Enin and H.M. Abdel-Bar, Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability. Expert Opin. Drug Deliv. 13 (2016) 1513–1521. https://doi.org/10.1080/17425247.2016.1224845            


Author(s):  
Md. Khalid Anwer ◽  
Muzaffar Iqbal ◽  
Mohammed F. Aldawsari ◽  
Ahmed Alalaiwe ◽  
Muqtader Mohammad ◽  
...  

2006 ◽  
Vol 7 (3) ◽  
Author(s):  
Pradip Kumar Ghosh ◽  
Rita J. Majithiya ◽  
Manish L. Umrethia ◽  
Rayasa S. R. Murthy

Author(s):  
S.G. Barnwell ◽  
L. Gauci ◽  
R.J. Harris ◽  
D. Attwood ◽  
G. Littlewood ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 58 ◽  
Author(s):  
Dong Shin ◽  
Bo Chae ◽  
Yoon Goo ◽  
Ho Yoon ◽  
Chang Kim ◽  
...  

To improve the dissolution and oral bioavailability of valsartan (VST), we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMED) composed of Capmul® MCM (oil), Tween® 80 (surfactant), Transcutol® P (cosurfactant), and Poloxamer 407 (precipitation inhibitor) but encountered a stability problem (Transcutol® P-induced weight loss in storage) after solidification. In the present study, replacing Transcutol® P with Gelucire® 44/14 resulted in a novel SuSMED formulation, wherein the total amount of surfactant/cosurfactant was less than that of the previous formulation. Solidified SuSMED (S-SuSMED) granules were prepared by blending VST-containing SuSMED with selective solid carriers, L-HPC and Florite® PS-10, wherein VST existed in an amorphous state. S-SuSMED tablets fabricated by direct compression with additional excipients were sufficiently stable in terms of drug content and impurity changes after 6 months of storage at accelerated conditions (40 ± 2 °C and 75 ± 5% relative humidity). Consequently, enhanced dissolution was obtained (pH 1.2, 2 h): 6-fold for S-SuSMED granules against raw VST; 2.3-fold for S-SuSMED tablets against Diovan® (reference tablet). S-SuSMED tablets increased oral bioavailability in rats (10 mg/kg VST dose): approximately 177–198% versus raw VST and Diovan®. Therefore, VST-loaded S-SuSMED formulations might be good candidates for practical development in the pharmaceutical industry.


Sign in / Sign up

Export Citation Format

Share Document