rosuvastatin calcium
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 66)

H-INDEX

13
(FIVE YEARS 4)

INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (10) ◽  
pp. 25-33
Author(s):  
Satya Lakshmi S. ◽  
Jyothsna P ◽  
Srinivasa Rao Y. ◽  
Naga Mallikarjun P. ◽  

Cyclodextrin has been recognized as a linker molecule that can link with the various drug substances to produce a nano-porous structure called nanosponges (NS) and increase the dissolution rate of poorly soluble drug substances. This work aimed to load rosuvastatin calcium (RSC) with solubility enhancer’s β-cyclodextrin (β-CD) or polyvinyl alcohol (PVA). β-CD based RSC-NS were fabricated by the emulsion solvent diffusion technique; with solubilizer dichloromethane and different ratios of ethyl cellulose as a co-polymer. Characterization of the prepared nanosponges was done by various testing procedures that confirm its nanosize and particle size and drug release. RSC loading in NS was assessed by DSC, FTIR and SEM. Among all the formulations F5 has 78.23 % entrapment efficiency. 2-3 folds of increased solubility were obtained with RSC-NS. F1-F6 formulations released 76.35 % - 98.69 % of the drug at the end of 30 min. In the preparation of extended-release tablets, NS prepared from F5 formulation was used and the best tablet formulation was selected based on various evaluation tests. All the formulations except S3, S8 followed first-order release kinetics. S1 & S2 drug release mechanism is Higuchi while other formulations are Korsemeyer-Peppas, so the release mechanism for most of the formulations is erosion than diffusion.


2021 ◽  
Vol 11 (6) ◽  
pp. 25-30
Author(s):  
Prashant L. Pingale

Rosuvastatin belongs to the statin medication class, which is used to treat excessive cholesterol and prevent heart disease. The Biopharmaceutical Classification System classifies it as class II. The goal of this project is to create 10 mg Rosuvastatin instant release pills using several types of materials. To boost the drug's bioavailability, superdisintegrants were used to speed up the disintegration and dissolution of Rosuvastatin calcium. Cited research work aims to formulate an immediate release tablet of Rosuvastatin for the treatment of hypercholesterolemia, hypolipoproteinemia, and atherosclerosis. The present work used a cost-effective wet granulation process to create an immediate release formulation of Rosuvastatin calcium. All of the batches were manufactured, and the granules were evaluated for pre-compression properties such as loss on drying, bulk density, tapped density, and compressibility index. Disintegration time and assay were determined to be within acceptable parameters, as were weight fluctuation, thickness, hardness, and friability of tablets. The effect of several superdisintegrants on in vitro dissolutions in 6.8 PH phosphate buffer was investigated. The final formulation was chosen based on the dissolving profile; dissolution studies revealed that formulations F2 and F4 released 80 percent of the medication within 15 minutes. Two different formulations of Rosuvastatin Calcium 5.199 and 10.398 mg employing immediate-release tablets were successfully generated using Crospovidone, Meglumine, and Comprecel 112D+®. The tablets showed complete drug release in 60 minutes and fair flow characteristics when compared to the innovators' product.


Author(s):  
LOVEPREET KAUR ◽  
TARANJIT KAUR ◽  
AMAR PAL SINGH ◽  
AJEET PAL SINGH

Objective: Preparation of Rosuvastatin Calcium by Using Hydrophilic Polymers and Solid Dispersion Method, Rosuvastatin calcium is a Dyslipidaemic agent, which act as a selective competitive inhibitor of HMG CoA educates enzyme and is used in the treatment of hyperlipidemia. Methods: In the present work, Solid Dispersion was prepared by kneading method to increase the solubility of Rosuvastatin Calcium. Results: Solid dispersions were evaluated by determining percentage yield, drug content, solubility, Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), DSC and in vitro dissolution profile. The prepared solid dispersion are formulated into capsule dosage form and characterized by various parameters i.e. weight variation, content uniformity, disintegration and dissolution. The evaluated parameters of capsule dosage form increase in solubility and dissolution rate of the pure drug. Conclusion: These are various techniques to enhance the solubility of the drug, such as particle size reduction, use of surfactants, solid dispersion etc. Carriers are the major players in these formulations, e. g. Hydroxypropylmethylcellulose, ethylcellulose, Carbopol, Acacia Gum etc. Carbopol and Acacia Gum is one of the most efficient polymers work as a carrier for these drugs to enhance solubility.


Author(s):  
Rocío González ◽  
Mª Ángeles Peña ◽  
Norma Sofía Torres ◽  
Guillermo Torrado

This work proposes a methodology for the design, development, optimisation, and evaluation of amorphous rosuvastatin calcium tablets (BCS class II drug). The main goal was to ensure rapid disintegration and high dissolution rate of the active ingredient, thus enhancing its bioavailability. The design started from a careful selection of excipients, which due to their characteristics and proportions within the formulation allowed the use of their properties such as fluidity or granulometric distribution. The formulation was characterised using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD) methods. The galenic SeDeM methodology was used to establish the profile of the active ingredient-excipient mixture and guarantee its suitability for producing tablets by the direct compression method. The results demonstrate that the amorphous rosuvastatin calcium tablets formulation developed made it possible to obtain cost-effective tablets by direct compression with optimal pharmacotechnical characteristics that showed a remarkable disintegration and dissolution rate. The manufactured tablets complied with the pharmacopoeia guidelines regarding uniformity of weight, tablet hardness, thickness, friability, in vitro disintegration time and dissolution profile.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rameshwar Gholve ◽  
Sanjay Pekamwar ◽  
Sailesh Wadher ◽  
Tukaram Kalyankar

Abstract Background The stability-indicating chromatographic method was developed and validated for simultaneous estimation of telmisartan and rosuvastatin calcium in bulk and in tablet dosage form. The RP-HPLC elution was carried out at 242.0 nm using column Oyster ODS3 (150 × 4.6 mm, 5 µm) isocratically, and a mobile phase containing 10 mM phosphate buffer with 1.1 g octane-1-sulfonic acid sodium salt having pH 2.5 (adjusted with 5% OPA) and acetonitrile, with a proportion of 500:500, v/v was pumped through the column maintained at ambient (about 25 °C) temperature with 1.0 mL/min flow rate. The proposed method was validated according to ICH Q2 (R1) guideline. Results Telmisartan and rosuvastatin were eluted at 2.553 min and 4.505 min, respectively. The method is linear from 99.9073 to 299.7218 µg/mL for telmisartan (R2 = 1.000) and 23.6841 – 71.0522 µg/mL for rosuvastatin (R2 = 0.999). The average recovery percentage was found 100.51, 99.76, and 99.14% for telmisartan and 99.68, 99.72, and 98.56% for rosuvastatin at three different levels. Results of method repeatability and intermediate precision were found within acceptable limits. Results of solution stability showed that mobile phase was stable for 2 days; standard and sample preparations are stable for 1 day at room temperature as well as in the refrigerator (2–8 °C). Also, forced degradation study results show that method is stability indicating as capable of distinguishing the active analytes peak from the degraded product. Conclusion The developed stability-indicating method is linear in studied concentration range as well as precise, accurate, specific, and robust. Hence, successfully this method can be used for routine analysis and stability study. Graphical abstract


2021 ◽  
Vol 11 (5) ◽  
pp. 696-707
Author(s):  
Swati Pandey ◽  
Neeraj Kumar Karmakar ◽  
Ravindra Kumar Pandey ◽  
Shiv Shankar Shukla

2021 ◽  
Vol 11 ◽  
Author(s):  
Vijendra Kumar Suryawanshi ◽  
Khomendra Kumar Sarwa ◽  
Suhas Narayan Sakarkar ◽  
Chanchal Deep Kaur

Background: Rosuvastatin calcium is a statin class of drug having limited oral bioavailability of about 20%. This problem might be overcome by making the biform complex using cow ghee fraction as a bioavailability enhancer. Methods: A precise thermal fractionation technique was adopted to separate different fatty acids from cow ghee. Collected fractions were subjected to characterization over parameters reported for fatty acids. LC-MS and FTIR confirm the content variation in the collected fraction. Biform complex was prepared by fusion method with a constant ratio of drug and cow ghee fraction. The prepared complex was subjected to FTIR, DSC, and LC-MS study to confirm chemical composition characteristics. Drug content, in-vitro and ex-vivo permeation studies were also performed. The anti-inflammatory response was measured using the carrageenan paw-induced edema rat model. Lipid-lowering effect and inflammation marker analysis was also performed using ELISA specific kit. Results: The biform complex prepared with a thermal fraction at 30ºC of cow ghee show the highest in-vitro and ex-vivo permeation. The anti-inflammation response of the biform complex F1 was higher than other tested formulations with considerable lipid and lipoprotein lowering properties. Conclusions: This study confirms that the thermal fractionation method abled to separate cow ghee as per their fatty acid content. The complexion of rosuvastatin calcium with cow ghee thermal fraction enhances oral bioavailability followed by the anti-inflammatory and lipid-lowering activity.


Author(s):  
Shahrin Tasnim Monisha ◽  
Kamrun Nahar Ela ◽  
Rabeya Islam ◽  
Sadia Afruz Ether ◽  
Fahad Imtiaz Rahman

Aims: This study investigated whether locally marketed rosuvastatin calcium tablets in Bangladesh have comparable physical and chemical attributes, including in vitro bioequivalence profiles, to the proprietary brand. Methodology: Nine generic products (G1-G9) containing 10 mg of rosuvastatin calcium were compared to the proprietary brand Crestor® (R1) and an FDA approved generic rosuvastatin calcium tablet (R2). Weight variation, diameter, thickness, friability, drug content, disintegration time and dissolution profiles were tested according to United States Pharmacopeia (USP) guidelines. In vitro bioequivalence requirements were assessed by calculating difference (f1) and similarity (f2) factors. Results: The generic products complied with the pharmacopeial requirements for weight variation, disintegration time and friability. All the tablets had drug ranging between 92%-105% and released more than 80% of rosuvastatin within first 15-30 minutes. However, for brands G5, G7 and G8 the f1 values were 15.7%, 15.82% and 25.21% respectively and their f2 values were 41.8, 41.6 and 32.6 respectively whereas for G9 the f2 value was 43.4. These brands have thus failed to meet in vitro bioequivalence requirements. Conclusion: We conclude that few substandard generics of rosuvastatin calcium has somehow found its way to the market and further studies are required to ascertain their noncompliance.


Sign in / Sign up

Export Citation Format

Share Document