Urban tree species classification with airborne hyperspectral VNIR and SWIR, PAN and DSM data by fusion at the object level

Author(s):  
Josselin Aval
Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Kepu Wang ◽  
Tiejun Wang ◽  
Xuehua Liu

With the significant progress of urbanization, cities and towns are suffering from air pollution, heat island effects, and other environmental problems. Urban vegetation, especially trees, plays a significant role in solving these ecological problems. To maximize services provided by vegetation, urban tree species should be properly selected and optimally arranged. Therefore, accurate classification of tree species in urban environments has become a major issue. In this paper, we reviewed the potential of light detection and ranging (LiDAR) data to improve the accuracy of urban tree species classification. In detail, we reviewed the studies using LiDAR data in urban tree species mapping, especially studies where LiDAR data was fused with optical imagery, through classification accuracy comparison, general workflow extraction, and discussion and summarizing of the specific contribution of LiDAR. It is concluded that combining LiDAR data in urban tree species identification could achieve better classification accuracy than using either dataset individually, and that such improvements are mainly due to finer segmentation, shadowing effect reduction, and refinement of classification rules based on LiDAR. Furthermore, some suggestions are given to improve the classification accuracy on a finer and larger species level, while also aiming to maintain classification costs.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1284 ◽  
Author(s):  
Sean Hartling ◽  
Vasit Sagan ◽  
Paheding Sidike ◽  
Maitiniyazi Maimaitijiang ◽  
Joshua Carron

Urban areas feature complex and heterogeneous land covers which create challenging issues for tree species classification. The increased availability of high spatial resolution multispectral satellite imagery and LiDAR datasets combined with the recent evolution of deep learning within remote sensing for object detection and scene classification, provide promising opportunities to map individual tree species with greater accuracy and resolution. However, there are knowledge gaps that are related to the contribution of Worldview-3 SWIR bands, very high resolution PAN band and LiDAR data in detailed tree species mapping. Additionally, contemporary deep learning methods are hampered by lack of training samples and difficulties of preparing training data. The objective of this study was to examine the potential of a novel deep learning method, Dense Convolutional Network (DenseNet), to identify dominant individual tree species in a complex urban environment within a fused image of WorldView-2 VNIR, Worldview-3 SWIR and LiDAR datasets. DenseNet results were compared against two popular machine classifiers in remote sensing image analysis, Random Forest (RF) and Support Vector Machine (SVM). Our results demonstrated that: (1) utilizing a data fusion approach beginning with VNIR and adding SWIR, LiDAR, and panchromatic (PAN) bands increased the overall accuracy of the DenseNet classifier from 75.9% to 76.8%, 81.1% and 82.6%, respectively. (2) DenseNet significantly outperformed RF and SVM for the classification of eight dominant tree species with an overall accuracy of 82.6%, compared to 51.8% and 52% for SVM and RF classifiers, respectively. (3) DenseNet maintained superior performance over RF and SVM classifiers under restricted training sample quantities which is a major limiting factor for deep learning techniques. Overall, the study reveals that DenseNet is more effective for urban tree species classification as it outperforms the popular RF and SVM techniques when working with highly complex image scenes regardless of training sample size.


2019 ◽  
Vol 40 (14) ◽  
pp. 5339-5365 ◽  
Author(s):  
Josselin Aval ◽  
Sophie Fabre ◽  
Emmanuel Zenou ◽  
David Sheeren ◽  
Mathieu Fauvel ◽  
...  

2015 ◽  
Vol 7 (12) ◽  
pp. 16917-16937 ◽  
Author(s):  
Dan Li ◽  
Yinghai Ke ◽  
Huili Gong ◽  
Xiaojuan Li

2021 ◽  
Vol 13 (10) ◽  
pp. 1868
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Quality tree species information gathering is the basis for making proper decisions in forest management. By applying new technologies and remote sensing methods, very high resolution (VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classification. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM algorithm proved the most effective pansharpening technique. The pixel- and object-based classification were applied to three pansharpened imageries using a random forest (RF) algorithm. The results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% for tree species classification based on pixel- and object-based approach, respectively. As expected, the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion on classification results was analyzed as well. Overall classification accuracy was improved by the spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, regardless of pixel- or object-based classification approaches, the influence of the use of pansharpening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas.


Sign in / Sign up

Export Citation Format

Share Document