Clinical validation of a non-invasive embryo selection algorithm combining time-lapse morphokinetics and the oxidative status of spent embryo culture media.

Author(s):  
Raquel Del Gallego Bonilla
2019 ◽  
Vol 111 (5) ◽  
pp. 918-927.e3 ◽  
Author(s):  
Lucía Alegre ◽  
Raquel Del Gallego ◽  
Sarai Arrones ◽  
Purificación Hernández ◽  
Manuel Muñoz ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Aparicio Ruiz ◽  
L Bori ◽  
E Paya ◽  
M A Valera ◽  
A Quiñonero ◽  
...  

Abstract Study question Would it be possible to predict embryo ploidy by taking into account conventional morphological and morphokinetic parameters together with IL-6 concentration in spent culture medium? Summary answer Our artificial neural network (ANN) trained with blastocyst morphology, embryo morphokinetics and IL-6 concentration distinguished between euploid/aneuploid embryos in 65% of the testing dataset. What is known already The analysis of spent embryo culture media represents the protein and metabolic state of the embryo and could be a non-invasive method of obtaining information about embryo quality. The impact of the presence/absence of several proteins in embryo culture samples over clinical results has been widely studied. The IL-6 is one of the most mentioned protein for its effect on embryo development, implantation and likelihood of achieving a live birth. In this initial attempt, we examined the predictive value for euploidy of a model that took into account the concentration of IL-6 in the spent culture medium. Study design, size, duration This prospective study included 319 embryos with PGT-A results. Out of the total, 127 were euploid and 192 aneuploid embryos. Concentration of IL-6 in spent embryo culture media (collected on the day of trophectoderm biopsy-fifth/sixth day of development), morphokinetic parameters (division time to 2 cells-t2; to 3 cells-t3, to 4 cells-t4; to 5 cells-t5 and time of blastocyst formation-tB) and blastocyst morphological grade (according to ASEBIR criteria) were considered to predict the embryo ploidy. Participants/materials, setting, methods Embryos were cultured in EmbryoScope. The chromosome analysis was performed using next-generation sequence technology. The concentration of IL-6 was measured in 20µL of spent embryo culture media with ELISA kits. Morphokinetic parameters were automatically annotated and the blastocyst morphology was evaluated by senior embryologists based on blastocele expansion, inner cell mass and trophectoderm quality. All the embryos were divided into 70% for training, 15% for validating and 15% for testing our ANN model with MatLab®. Main results and the role of chance The general description for the euploid embryo population was the following: 2% of the embryos were graded as A, 71% were graded as B and 28% were graded as C; the means and standard deviations were 25.32±2.97 hours (h) for t2, 35.33±5.15h for t3, 37.30±5.43h for t4, 48.24±6.62h for t5 and 103.93±12.8h for tB; and the average of IL-6 concentration was 1.51±0.70 pg/ml. The general description for the aneuploid embryo population was the following: 1% of the embryos were graded as A, 48% were graded as B and 51% were graded as C; the means and standard deviations were 26.13±3.51h for t2, 36.70±4.29h for t3, 38.20±4.24h for t4, 49.86±6.89h for t5 and 107.10±8.29h for tB; and the average of IL-6 concentration was 1.47±0.71 pg/ml. Our ANN model showed a higher general success rate as we increased the variables considered in the final prediction of euploid embryos. The accuracy, sensitivity and specificity for the testing dataset were: 0.60, 0.12 and 0.87 with morphokinetic parameters; 0.63, 0.24 and 0.93 with morphokinetics and IL-6 concentration; and 0.65, 0.16 and 0.96 with morphokinetics, IL-6 concentration and blastocyst morphological grade. Limitations, reasons for caution The low sensitivity and high specificity achieved in our models indicated that they were more capable of detecting aneuploid than euploid embryos. As this was a preliminary study, the small number of embryos included in the test (n = 48) was also a limitation. Wider implications of the findings The results showed that our model tended to classify the embryos as aneuploid. More euploid embryos would be necessary to train our model and achieve better results in the prediction of chromosomally normal embryos. Further studies with large number of embryos and additional variables could improve the non-invasive ploidy prediction. Trial registration number not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Biricik ◽  
V Bianchi ◽  
F Lecciso ◽  
M Surdo ◽  
M Manno ◽  
...  

Abstract Study question To explore ploidy concordance between invasive and non-invasive PGTA (niPGT-A) at different embryo culture time. Summary answer High level (>84%) of concordance rate for ploidy and sex, sensitivity (>88%), and specificity (76%) were obtained for both day6/7 samples and day5 samples. What is known already The analysis of embryo cell free DNA (cfDNA) that are released into culture media during in vitro embryo development has the potential to evaluate embryo ploidy status. However, obtaining sufficient quality and quantity of cfDNA is essential to achieve interpretable results for niPGT-A. More culture time is expected to be directly proportional to the release of more cfDNA. But embryo culture time is limited due to in-vitro embryo survival potential. Therefore, it is important to estimate the duration of the culture that will provide the maximum cfDNA that can be obtained without adversely affecting the development of the embryo. Study design, size, duration A total of 105 spent culture media (SCM) from day5-day7 blastocyst stage embryos have been included in this cohort study. The cfDNA of SCM samples were amplified and analyzed for niPGT-A by NGS analysis. The SCM samples were divided into 2 subgroups according the embryo culture hours (Day5 and Day6/7 group). The DNA concentration, informativity and euploidy results have then been compared with their corresponding embryos after trophectoderm biopsy (TE) and PGT-A analysis by NGS Participants/materials, setting, methods Embryos cultured until Day3 washed and cultured again in 20µl fresh culture media until embryo biopsy on Day5, 6, or 7. After biopsy SCM samples were immediately collected in PCR tubes and conserved at –20 °C until whole genome amplification by MALBAC® (Yicon Genomics). The TE and SCM samples were analyzed by next-generation sequencing (NGS) using Illumina MiSeq® System. NGS data analysis has been done by Bluefuse Multi Software 4.5 (Illumina) for SCM and TE samples Main results and the role of chance Only the SCM samples which have an embryo with a conclusive result were included in this cohort (n = 105). Overall 97.1% (102/105) of SCM samples gave a successful DNA amplification with a concentration ranging 32.4–128.5ng/µl. Non-informative (NI) results including a chaotic profile (>5 chromosome aneuploidies) were observed in 17 samples, so 83.3%(85/102) of SCM samples were informative for NGS data analysis. Ploidy concordance rate with the corresponding TE biopsies (euploid vs euploid, aneuploid vs aneuploid) was 84.7% (72/85). Sensitivity and specificity were 92,8% and 76,7%, respectively with no significant difference for all parameters for day 6/7 samples compared with day 5 samples. The false-negative rate was 3.5% (3/85), and false-positive rate was 11.7% (10/85). Limitations, reasons for caution The sample size is relatively small. Larger prospective studies are needed. As this is a single-center study, the impact of the variations in embryo culture conditions can be underestimated. Maternal DNA contamination risk cannot be revealed in SCM, therefore the use of molecular markers would increase the reliability. Wider implications of the findings: Non-invasive analysis of embryo cfDNA analyzed in spent culture media demonstrates high concordance with TE biopsy results in both early and late culture time. A non-invasive approach for aneuploidy screening offers important advantages such as avoiding invasive embryo biopsy and decreased cost, potentially increasing accessibility for a wider patient population. Trial registration number Not applicable


Doctor Ru ◽  
2021 ◽  
Vol 20 (8) ◽  
pp. 12-18
Author(s):  
G.V. Savostina ◽  
◽  
S.G. Perminova ◽  
A.V. Timofeeva ◽  
M.A. Veyukova ◽  
...  

Objective of the Review: To analyse the modern methods for assessment of the implantation potential of embryos in assisted reproductive programs. Key Points. We present the study results for selection of a most optimal embryo for transfer, using visual assessment of embryo quality, preimplantation genetic aneuploidy testing, analysis of metabolomic, proteomic, transcriptomic profiles of culture media and embryo blastocele. We have paid special attention to assessment of small non-coding RNA (sncRNA) in embryo culture medium. Conclusion. Due to the high sensitivity, objectivity and biomarker resistance to degradation, the most promising non-invasive method to assess the implantation potential of an embryo is analysis of the sncRNA profile in embryo culture media. Keywords: aneuploidy, pre-implantation genetic testing, small non-coding RNAs, proteomic analysis, metabolomic analysis.


2018 ◽  
Vol 37 ◽  
pp. e16
Author(s):  
Virginia Garcia Laez ◽  
Lucia Alegre ◽  
Raquel Del Gallego ◽  
Tzali Cnaani ◽  
Sergei Shnizer ◽  
...  

2014 ◽  
Vol 15 (3) ◽  
pp. 156-160 ◽  
Author(s):  
Ender Yalcinkaya ◽  
Elif G. Ergin ◽  
Eray Caliskan ◽  
Zeynep Oztel ◽  
Alev Ozay ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Alber. Rodriguez ◽  
M Valera ◽  
L Bori ◽  
F Meseguer ◽  
L Alegre ◽  
...  

Abstract Study question Is there a significant difference in the clinical results of embryos cultured in time-lapse systems with single-step medium and conventional benchtop incubators with sequential media? Summary answer Embryos cultured in time-lapse systems and single-step media are more likely to achieve an ongoing pregnancy and have higher implantation rates than those cultured otherwise. What is known already One of the strategies for embryo culture in IVF consisted in conventional benchtop incubators combined with sequential culture media (CI-Seq). New generation time-lapse systems provide useful information on the morphokinetics of embryo development, but also a stable culture environment where embryos can develop undisturbed until blastocyst stage when paired with single-step culture media (TLS-SS). These features have the potential to improve embryo development and selection. Nonetheless, there is inconclusive evidence of whether this new culture strategy has a significant effect on clinical results of ICSI treatments. Studies on the matter are heterogeneous and reduced in both number and sample size. Study design, size, duration Unicentric retrospective cohort study. We compared the results of 11471 blastocyst transferences from 10276 ICSI treatments performed during 4 consecutive years, where embryos were cultured either on CI with sequential media (N = 5255) or a TLS with single-step medium (N = 5021). 3922 of the totals were fresh embryo transfers (ET) and 7549 frozen-thawed ET. We compared the implantation rate (IR) and ongoing pregnancy rate (OGPR) in both study groups, stratifying by ovum origin. Participants/materials, setting, methods Three models of TLS were used for embryo culture: EmbryoScope, EmbryoScope Plus (Vitrolife) and GERI (Genea Biomedx), as well as one CI (ASTEC). Sequential media: Cook, Origio, Vitrolife; Single-step media: Gems, Irvine, Life Global. Embryo scoring and selection was performed by ASEBIR criteria in the CI group, and by morphological and morphokinetic assessment for embryos cultured in TLS. Embryos were extracted from the CI only for media change. Statistical analysis: ANOVA tests and Logistic regressions. Main results and the role of chance A general Logistic Regression was performed, including egg origin, PGT-A and culture strategy to explain their impact in OGPR. Egg origin (OR = 1,094 (95%CI: 1,015–1,179); P = 0,019) and culture strategy (OR = 1,141 (95%CI: 1,060–1,229); P < 0,001) were statistically significant, which confirms the need for stratification due to the heterogeneity of the groups. The total IR in the TLS-SS group was 54,68±48,84%, significantly higher than that of CI-Seq (49,18±47,91%; P < 0,001). In ovum-donation treatments, a complete Logistic Regression for OGPR, with all typical confounding variables (age, BMI, nº oocytes, fresh/frozen transfer, number and day of ET) resulted in an OR = 1,187 (95%CI: 1,074–1,313; P = 0,001) favoring culture in TL-SS. IR in these treatments were 61,98±47,68% in TL-SS vs 55,08±46,58% in CI-Seq (P < 0,001) in fresh transfers and 51,48±48,91% in TL-SS vs 44,39±47,67% in CI-Seq (P < 0,001) in frozen-thawed ET. In autologous treatments with PGT a similar regression yielded an OR = 1,055 (95%CI: 0,889–1,252; P = 0,542) for culture strategy. The IR of genetically tested ET was not significantly different: 53,08±49,49% for TL-SS, 50,90±49,07% for CI-Seq, P = 0,246. In autologous procedures without PGT, culture strategy was not significant for OGPR (OR = 0,998 (95%CI: 0,835–1,191), P = 0,979) nor IR of fresh (49,75±48,91% TL-SS vs 44,23±47,36% CI-Seq; P = 0,081) nor frozen-thawed transferences (50,77±48,33% TL-SS vs 50,67±47,33% CI-Seq; P = 0,970). Limitations, reasons for caution After fertilization check, embryos were evaluated exclusively on D5/6. On D3, embryos cultured in CI were taken out only for a quick media change, but not for evaluation, and all handling was done in isolette cabins with controlled environmental conditions. Being a retrospective study, there is high variability in population. Wider implications of the findings: A more homogenous prospective study, including comparison in life-birth rates, is necessary to extract final conclusions. However, our results suggest that the introduction of TLS and SS media in IVF laboratories might be a valid strategy to increase clinical results, especially in fresh embryo, thanks to an improved embryo selection. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Aparici. Ruiz ◽  
L Bori ◽  
E Paya ◽  
M A Valera ◽  
A Quiñonero ◽  
...  

Abstract Study question Would it be possible to predict embryo ploidy by taking into account conventional morphological and morphokinetic parameters together with IL–6 concentration in spent culture medium? Summary answer Our artificial neural network (ANN) trained with blastocyst morphology, embryo morphokinetics and IL–6 concentration distinguished between euploid/aneuploid embryos in 65% of the testing dataset. What is known already The analysis of spent embryo culture media represents the protein and metabolic state of the embryo and could be a non-invasive method of obtaining information about embryo quality. The impact of the presence/absence of several proteins in embryo culture samples over clinical results has been widely studied. The IL–6 is one of the most mentioned protein for its effect on embryo development, implantation and likelihood of achieving a live birth. In this initial attempt, we examined the predictive value for euploidy of a model that took into account the concentration of IL–6 in the spent culture medium. Study design, size, duration This prospective study included 319 embryos with PGT-A results. Out of the total, 127 were euploid and 192 aneuploid embryos. Concentration of IL–6 in spent embryo culture media (collected on the day of trophectoderm biopsy-fifth/sixth day of development), morphokinetic parameters (division time to 2 cells-t2; to 3 cells-t3, to 4 cells-t4; to 5 cells-t5 and time of blastocyst formation-tB) and blastocyst morphological grade (according to ASEBIR criteria) were considered to predict the embryo ploidy. Participants/materials, setting, methods Embryos were cultured in EmbryoScope. The chromosome analysis was performed using next-generation sequence technology. The concentration of IL–6 was measured in 20µL of spent embryo culture media with ELISA kits. Morphokinetic parameters were automatically annotated and the blastocyst morphology was evaluated by senior embryologists based on blastocele expansion, inner cell mass and trophectoderm quality. All the embryos were divided into 70% for training, 15% for validating and 15% for testing our ANN model with MatLab®. Main results and the role of chance The general description for the euploid embryo population was the following: 2% of the embryos were graded as A, 71% were graded as B and 28% were graded as C; the means and standard deviations were 25.32±2.97 hours (h) for t2, 35.33±5.15h for t3, 37.30±5.43h for t4, 48.24±6.62h for t5 and 103.93±12.8h for tB; and the average of IL–6 concentration was 1.51±0.70 pg/ml. The general description for the aneuploid embryo population was the following: 1% of the embryos were graded as A, 48% were graded as B and 51% were graded as C; the means and standard deviations were 26.13±3.51h for t2, 36.70±4.29h for t3, 38.20±4.24h for t4, 49.86±6.89h for t5 and 107.10±8.29h for tB; and the average of IL–6 concentration was 1.47±0.71 pg/ml. Our ANN model showed a higher general success rate as we increased the variables considered in the final prediction of euploid embryos. The accuracy, sensitivity and specificity for the testing dataset were: 0.60, 0.12 and 0.87 with morphokinetic parameters; 0.63, 0.24 and 0.93 with morphokinetics and IL–6 concentration; and 0.65, 0.16 and 0.96 with morphokinetics, IL–6 concentration and blastocyst morphological grade. Limitations, reasons for caution The low sensitivity and high specificity achieved in our models indicated that they were more capable of detecting aneuploid than euploid embryos. As this was a preliminary study, the small number of embryos included in the test (n = 48) was also a limitation. Wider implications of the findings: The results showed that our model tended to classify the embryos as aneuploid. More euploid embryos would be necessary to train our model and achieve better results in the prediction of chromosomally normal embryos. Further studies with large number of embryos and additional variables could improve the non-invasive ploidy prediction. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document