0042 - Microbial communities thriving in methane fuelled arctic marine ecosystems

Author(s):  
Vincent Carrier ◽  
Friederike Gründger
Author(s):  
Piyush Chandna ◽  
Rama Sisodia ◽  
Ramesh Chander Kuhad ◽  
Naseem A. Gaur

2020 ◽  
Vol 8 (2) ◽  
pp. 78 ◽  
Author(s):  
Gabriella Caruso

Microbial biofilms are biological structures composed of surface-attached microbial communities embedded in an extracellular polymeric matrix. In aquatic environments, the microbial colonization of submerged surfaces is a complex process involving several factors, related to both environmental conditions and to the physical-chemical nature of the substrates. Several studies have addressed this issue; however, more research is still needed on microbial biofilms in marine ecosystems. After a brief report on environmental drivers of biofilm formation, this study reviews current knowledge of microbial community attached to artificial substrates, as obtained by experiments performed on several material types deployed in temperate and extreme polar marine ecosystems. Depending on the substrate, different microbial communities were found, sometimes highlighting the occurrence of species-specificity. Future research challenges and concluding remarks are also considered. Emphasis is given to future perspectives in biofilm studies and their potential applications, related to biofouling prevention (such as cell-to-cell communication by quorum sensing or improved knowledge of drivers/signals affecting biological settlement) as well as to the potential use of microbial biofilms as sentinels of environmental changes and new candidates for bioremediation purposes.


2015 ◽  
Vol 12 (2) ◽  
pp. 149 ◽  
Author(s):  
Elliott G. Duncan ◽  
William A. Maher ◽  
Simon D. Foster

Environmental context In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments. Abstract Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Author(s):  
Tasman P. Crowe ◽  
Christopher L. J. Frid
Keyword(s):  

Pneumologie ◽  
2009 ◽  
Vol 63 (S 01) ◽  
Author(s):  
T Zakharkina ◽  
C Herr ◽  
A Yildirim ◽  
M Friedrich ◽  
R Bals

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
JJ Araya ◽  
M Chavarría ◽  
A Pinto-Tomás ◽  
C Murillo ◽  
L Uribe ◽  
...  

2016 ◽  
Vol 552 ◽  
pp. 93-113 ◽  
Author(s):  
AT Davidson ◽  
J McKinlay ◽  
K Westwood ◽  
PG Thomson ◽  
R van den Enden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document