1281 - Study on antibiotic resistome and bacterial community in Indonesian river

Author(s):  
Windi Muziasari ◽  
Vanny Narita
Keyword(s):  
2020 ◽  
Vol 85 ◽  
pp. 183-196
Author(s):  
Y Sun ◽  
J Liu ◽  
Q Yao ◽  
J Jin ◽  
X Liu ◽  
...  

Viruses are the most abundant and ubiquitous biological entities in various ecosystems, yet few investigations of viral communities in wetlands have been performed. To address this data gap, water samples from 6 wetlands were randomly collected across northeast China; viruses in the water were concentrated by sequential tangential flow filtration, and viral communities were assessed through randomly amplified polymorphic DNA-PCR (RAPD-PCR) with 4 decamer oligonucleotide primers. Principal coordinate analysis and hierarchical clustering analysis of the DNA fingerprints showed that viral community compositions differed among the water samples: communities in the 2 coastal wetlands were more similar to each other than to those in the 4 freshwater wetlands. The Shannon-Weaver index (H) and evenness index (E) of the RAPD-PCR fingerprint also differed among the 6 wetlands. Mantel test revealed that the changes in viral communities in wetland water were most closely related to the water NH4+-N and inorganic C content, followed by total K, P, C and NO3--N. DNA sequence analysis of the excised bands revealed that viruses accounted for ~40% of all sequences. Among the hit viral homologs, the majority belonged to the Microviridae. Moreover, variance partitioning analysis showed that the viral community contributed 24.58% while environmental factors explained 30.56% of the bacterial community variation, indicating that the bacterial community composition was strongly affected by both viral community and water variables. This work provides an initial outline of the viral communities from different types of wetlands in northeast China and improves our understanding of the viral diversity in these ecosystems.


2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

Author(s):  
Erwin G. Zoetendal ◽  
Antoon D. L. Akkermans ◽  
Wilma M. Akkermans-van Vliet ◽  
J. Arjan G. M. De Visser ◽  
Willem M. De Vos

2020 ◽  
Vol 13 (11) ◽  
pp. 1
Author(s):  
A. R. B. Zanco ◽  
A. Ferreira ◽  
G. C. M. Berber ◽  
E. N. Gonzaga ◽  
D. C. C. Sabino

The different integrated production systems can directly interfere with its bacterial community. The present study aimed to assess density, bacterial diversity and the influence of dry and rainy season in different integrated and an exclusive production system. The fallow and a native forest area was assessed to. Samples were collected in 2012 March and September. The isolation were carried out into Petri dishes containing DYGS medium. The number of colony forming units (CFU) was counted after 48 hours and. The bacterial density ranged between 106 and 107 CFU g-1 soil. The crop system affected the dynamics of the bacterial community only in the rainy season. The rainy season showed greater density of total bacteria when compared to the dry period regardless of the cropping system. The dendrograms with 80 % similarity showed thirteen and fourteen groups in the rainy and dry seasons. Isolates with the capacity to solubilize phosphate in vitro were obtained from all areas in the two seasons, but this feature has been prevalent in bacteria isolated during the rainy season


2013 ◽  
Vol 20 (6) ◽  
pp. 1225-1233
Author(s):  
Wang ZHAO ◽  
Jingzhe JIANG ◽  
Jiangyong WANG ◽  
Tao CHEN ◽  
Guangfeng LIU ◽  
...  

2016 ◽  
Author(s):  
Jennifer C. Underwood ◽  
◽  
Ronald W. Harvey ◽  
David W. Metge ◽  
Denis R. LeBlanc

Sign in / Sign up

Export Citation Format

Share Document