scholarly journals Plantar Pressure Distribution during Standing in Female Patients with Hip Osteoarthritis Who Underwent Total Hip Arthroplasty

Author(s):  
Miura M ◽  
◽  
Nagai K ◽  
Tagomori K ◽  
Ikutomo H ◽  
...  

Introduction: Assessment of plantar pressure indicates the manner in which the plantar region contacts the ground as the first point in a leg-linked kinetic chain, and receives force from the ground. However, few studies have examined the changes in plantar pressure distribution in patients who underwent Total Hip Arthroplasty (THA) before and after THA, or compared plantar pressure distribution between THA patients and healthy adults. Objective: Plantar pressure distribution in patients with end-stage hip osteoarthritis who undergo THA may be adjusted to that in healthy adults by correcting leg length discrepancy. Herein, our objective was to find out if the plantar pressure distribution during standing differs before and after THA, and between healthy adults and THA patients. Design: Case control study. Setting: Single orthopedic clinic in Japan. Participants: THA patients (n=58; THA group) and healthy adults (n=53; control group). Interventions: Not applicable. Main outcome measure(s): The maximum plantar pressure under each foot measured during standing for 20 s was assessed for location, symmetry, and leg length discrepancy. Results: The distribution plantar pressure in the THA group differed preand postoperatively. The maximum plantar pressure region was the heel in approximately 80% of the patients three months after THA; it was not different in THA patients three months postoperatively and in healthy adults. Patients with asymmetrical maximum plantar pressure regions were those whose postoperative maximum plantar pressure region in the affected leg was the forefoot and those whose maximum plantar pressure region in the affected leg shifted to the heel. The leg length discrepancies decreased significantly after THA. Conclusions: The plantar pressure distribution during standing in female patients adjusted to that in healthy adults after THA. Patients with asymmetrical distribution of maximum plantar pressure may benefit from balance assessment and physical therapy.

2020 ◽  
Vol 9 (10) ◽  
pp. 205846012096491
Author(s):  
Mats Geijer ◽  
Sverrir Kiernan ◽  
Martin Sundberg ◽  
Gunnar Flivik

Background Restoration of a correct biomechanical situation after total hip arthroplasty is important. Purpose To evaluate proximal femoral symmetry of acetabular and femoral offset and femoral neck anteversion pre- and postoperatively in hip arthroplasty by semi-automated 3D-CT and to validate the software measurements by inter- and intraobserver agreement calculations. Material and Methods In low-dose CT on 71 patients before and after unilateral total hip arthroplasty, two observers used a digital 3D templating software to measure acetabular offset, true and functional femoral offset, and femoral neck anteversion. Observer agreements were calculated using intraclass correlation. Hip measurements were compared in each patient and between pre- and postoperative measurements. Results Preoperatively, acetabular offset (2.4 mm), true (2.2 mm), and functional global offset (2.7 mm) were significantly larger on the osteoarthritic side without side-to-side differences for true and functional femoral offset or femoral neck anteversion. Postoperatively, acetabular offset was significantly smaller on the operated side (2.1 mm) with a concomitantly increased true (2.5 mm) and functional femoral offset (1.5 mm), resulting in symmetric true and functional global offsets. There were no differences in postoperative femoral neck anteversion. Inter- and intraobserver agreements were near-perfect, ranging between 0.92 and 0.98 with narrow confidence intervals (0.77–0.98 to 0.94–0.99). Conclusion Acetabular and concomitantly global offset are generally increased in hip osteoarthritis. Postoperative acetabular offset was reduced, and femoral offset increased to maintain global offset. 3D measurements were reproducible with near-perfect observer agreements. 3D data sets should be used for pre- and postoperative measurements in hip arthroplasty.


2015 ◽  
Vol 50 (2) ◽  
pp. 117-125 ◽  
Author(s):  
François Fourchet ◽  
Luke Kelly ◽  
Cosmin Horobeanu ◽  
Heiko Loepelt ◽  
Redha Taiar ◽  
...  

Context: Fatigue-induced alterations in foot mechanics may lead to structural overload and injury. Objectives: To investigate how a high-intensity running exercise to exhaustion modifies ankle plantar-flexor and dorsiflexor strength and fatigability, as well as plantar-pressure distribution in adolescent runners. Design: Controlled laboratory study. Setting: Academy research laboratory. Patients or Other Participants: Eleven male adolescent distance runners (age = 16.9 ± 2.0 years, height = 170.6 ± 10.9 cm, mass = 54.6 ± 8.6 kg) were tested. Intervention(s): All participants performed an exhausting run on a treadmill. An isokinetic plantar-flexor and dorsiflexor maximal-strength test and a fatigue test were performed before and after the exhausting run. Plantar-pressure distribution was assessed at the beginning and end of the exhausting run. Main Outcome Measure(s): We recorded plantar-flexor and dorsiflexor peak torques and calculated the fatigue index. Plantar-pressure measurements were recorded 1 minute after the start of the run and before exhaustion. Plantar variables (ie, mean area, contact time, mean pressure, relative load) were determined for 9 selected regions. Results: Isokinetic peak torques were similar before and after the run in both muscle groups, whereas the fatigue index increased in plantar flexion (28.1%; P = .01) but not in dorsiflexion. For the whole foot, mean pressure decreased from 1 minute to the end (−3.4%; P = .003); however, mean area (9.5%; P = .005) and relative load (7.2%; P = .009) increased under the medial midfoot, and contact time increased under the central forefoot (8.3%; P = .01) and the lesser toes (8.9%; P = .008). Conclusions: Fatigue resistance in the plantar flexors declined after a high-intensity running bout performed by adolescent male distance runners. This phenomenon was associated with increased loading under the medial arch in the fatigued state but without any excessive pronation.


2013 ◽  
Vol 103 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Elena Escamilla-Martínez ◽  
Alfonso Martínez-Nova ◽  
Beatriz Gómez-Martín ◽  
Raquel Sánchez-Rodríguez ◽  
Lourdes María Fernández-Seguín

Background: Fatigue due to running has been shown to contribute to changes in plantar pressure distribution. However, little is known about changes in foot posture after running. We sought to compare the Foot Posture Index before and after moderate exercise and to relate any changes to plantar pressure patterns. Methods: A baropodometric evaluation was made, using the FootScan platform (RSscan International, Olen, Belgium), of 30 men who were regular runners and their foot posture was examined using the Foot Posture Index before and after a 60-min continuous run at a moderate pace (3.3 m/sec). Results: Foot posture showed a tendency toward pronation after the 60-min run, gaining 2 points in the Foot Posture Index. The total support and medial heel contact areas increased, as did pressures under the second metatarsal head and medial heel. Conclusions: Continuous running at a moderate speed (3.3 m/sec) induced changes in heel strike related to enhanced pronation posture, indicative of greater stress on that zone after physical activity. This observation may help us understand the functioning of the foot, prevent injuries, and design effective plantar orthoses in sport. (J Am Podiatr Med Assoc 103(2): 121–125, 2013)


Author(s):  
Muge Kirmizi ◽  
Yesim Salik Sengul ◽  
Salih Angin

BACKGROUND: Flexible flatfoot is associated with altered plantar pressure distribution, but it is not clear how muscle fatigue affects plantar pressure characteristics in flexible flatfoot and normal foot. OBJECTIVE: To investigate the effects of calf muscles fatigue on plantar pressure variables in flexible flatfoot and normal foot. METHODS: Twenty-five people with flexible flatfoot and twenty-five people with normal foot were included. The unilateral heel-rise test was used to induce calf muscles fatigue. Plantar pressure variables were collected during preferred walking immediately before and after fatigue. The two-way mixed-design ANOVA was used to determine the main effect of fatigue and the interaction between foot posture and fatigue. RESULTS: Fatigue causes medialization of the contact area under the forefoot and the maximum force under the heel and forefoot (p< 0.05). When examining the differences in the effects of fatigue between groups, the contact area under the medial heel increased with fatigue in flexible flatfoot but decreased in normal foot; moreover, the contact area and maximum force under the midfoot and the maximum force under the third metatarsal decreased with fatigue in flexible flatfoot but increased in normal foot (p< 0.05). CONCLUSIONS: Calf muscles fatigue causes medialization of the maximum force and contact area. Especially the midfoot was affected differently by fatigue in flexible flatfoot and normal foot.


2020 ◽  
Vol 76 ◽  
pp. 39-43
Author(s):  
Namika Miura ◽  
Koutatsu Nagai ◽  
Keiichi Tagomori ◽  
Hisashi Ikutomo ◽  
Kenichi Okamura ◽  
...  

2014 ◽  
Vol 39 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Maede Farzadi ◽  
Zahra Safaeepour ◽  
Mohammad E Mousavi ◽  
Hassan Saeedi

Background:Higher plantar pressures at the medial forefoot are reported in hallux valgus. Foot orthoses with medial arch support are considered as an intervention in this pathology. However, little is known about the effect of foot orthoses on plantar pressure distribution in hallux valgus.Objectives:To investigate the effect of a foot orthosis with medial arch support on pressure distribution in females with mild-to-moderate hallux valgus.Study design:Quasi-experimental.Methods:Sixteen female volunteers with mild-to-moderate hallux valgus participated in this study and used a medial arch support foot orthosis for 4 weeks. Plantar pressure for each participant was assessed using the Pedar-X®in-shoe system in four conditions including shoe-only and foot orthosis before and after the intervention.Results:The use of the foot orthosis for 1 month led to a decrease in peak pressure and maximum force under the hallux, first metatarsal, and metatarsals 3–5 ( p < 0.05). In the medial midfoot region, peak pressure, maximum force, and contact area were significantly higher with the foot orthosis than shoe-only before and after the intervention ( p = 0.00).Conclusion:A foot orthosis with medial arch support could reduce pressure beneath the hallux and the first metatarsal head by transferring the load to the other regions. It would appear that this type of foot orthosis can be an effective method of intervention in this pathology.Clinical relevanceFindings of this study will improve the clinical knowledge about the effect of the medial arch support foot orthosis used on plantar pressure distribution in hallux valgus pathology.


2016 ◽  
Vol 106 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Lale Cerrahoglu ◽  
Umut Koşan ◽  
Tuba Cerrahoglu Sirin ◽  
Aslihan Ulusoy

Background: We aimed to investigate whether a home exercise for self-care program that consists of range of motion (ROM), stretching, and strengthening exercises could improve ROM for foot joints and plantar pressure distribution during walking in diabetic patients to prevent diabetic foot complications. Methods: Seventy-six diabetic patients were recruited (38 with neuropathy and 38 without neuropathy). Neuropathy and nonneuropathy groups were randomly divided into a home exercise group (n = 19) and a control group (n = 19). Exercise groups performed their own respective training programs for 4 weeks, whereas no training was done in the control group. Total contact area and plantar pressure under six foot areas before and after the exercise program were measured. Ankle and first metatarsophalangeal joint ROM were measured before and after the exercise program. Results: In the exercise group, there were significant improvements in ROM for the ankle and first metatarsophalangeal joints (P &lt; .001); static pedobarographic values showed significant reduction in right forefoot-medial pressure (P = .010); and significant decreases were seen in dynamic pedobarographic values of peak plantar pressure at the left forefoot medial (P = .007), right forefoot lateral (P = .018), left midfoot (P &lt; .001), and right hindfoot (P = .021) after exercise. No significant positive or negative correlation was found between the neuropathy and nonneuropathy groups (P &gt; .05). Conclusions: A home exercise program could be an effective preventive method for improving ROM for foot joints and plantar pressure distribution in diabetic patients independent of the presence of neuropathy.


Sign in / Sign up

Export Citation Format

Share Document