scholarly journals On quantum-classical equivalence for composed communication problems

2010 ◽  
Vol 10 (5&6) ◽  
pp. 435-455
Author(s):  
A.A. Sherstov

An open problem in communication complexity proposed by several authors is to prove that for every Boolean function $f,$ the task of computing $f(x\wedge y)$ has polynomially related classical and quantum bounded-error complexities. We solve a variant of this question. For every $f,$ we prove that the task of computing, on input \mbox{$x$ and $y,$} \emph{both} of the quantities $f(x\wedge y)$ and $f(x\vee y)$ has polynomially related classical and quantum bounded-error complexities. We further show that the quantum bounded-error complexity is polynomially related to the classical deterministic complexity and the block sensitivity of $f.$ This result holds regardless of prior entanglement.

1999 ◽  
Vol 10 (04) ◽  
pp. 535-542
Author(s):  
RICHARD BEIGEL ◽  
ANNA BERNASCONI

We investigate the representation of Boolean functions as polynomials over the field GF(2), and prove an interesting characteriztion theorem: the degree of a Boolean function over GF(2) is equal to the size of its largest subfunction that takes the value 1 on an odd number of input strings. We then present some properties of odd functions, i.e., functions that take the value 1 on an odd number of strings, and analyze the connections between the problem of the existence of odd functions with very low maximal sensitivity and the long standing open problem of the relationship between the maximal sensitivity and the block sensitivity of Boolean functions.


2015 ◽  
Vol 29 (1) ◽  
pp. 93-117
Author(s):  
Mieczysław Kula ◽  
Małgorzata Serwecińska

AbstractThe paper is devoted to the communication complexity of lattice operations in linearly ordered finite sets. All well known techniques ([4, Chapter 1]) to determine the communication complexity of the infimum function in linear lattices disappoint, because a gap between the lower and upper bound is equal to O(log2n), where n is the cardinality of the lattice. Therefore our aim will be to investigate the communication complexity of the function more carefully. We consider a family of so called interval protocols and we construct the interval protocols for the infimum. We prove that the constructed protocols are optimal in the family of interval protocols. It is still open problem to compute the communication complexity of constructed protocols but the numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Thomas P. Hayes

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience For every positive integer k, we construct an explicit family of functions f : \0, 1\(n) -\textgreater \0, 1\ which has (k + 1) - party communication complexity O(k) under every partition of the input bits into k + 1 parts of equal size, and k-party communication complexity Omega (n/k(4)2(k)) under every partition of the input bits into k parts. This improves an earlier hierarchy theorem due to V. Grolmusz. Our construction relies on known explicit constructions for a famous open problem of K. Zarankiewicz, namely, to find the maximum number of edges in a graph on n vertices that does not contain K-s,K-t as a subgraph.


2011 ◽  
Vol 11 (7&8) ◽  
pp. 574-591
Author(s):  
Ashley Montanaro

We present a new example of a partial boolean function whose one-way quantum communication complexity is exponentially lower than its one-way classical communication complexity. The problem is a natural generalisation of the previously studied Subgroup Membership problem: Alice receives a bit string $x$, Bob receives a permutation matrix $M$, and their task is to determine whether $Mx=x$ or $Mx$ is far from $x$. The proof uses Fourier analysis and an inequality of Kahn, Kalai and Linial.


2011 ◽  
Vol DMTCS Proceedings vol. AP,... (Proceedings) ◽  
Author(s):  
Raimundo Briceño ◽  
Pierre-Etienne Meunier

International audience Studying cellular automata with methods from communication complexity appears to be a promising approach. In the past, interesting connections between communication complexity and intrinsic universality in cellular automata were shown. One of the last extensions of this theory was its generalization to various "communication problems'', or "questions'' one might ask about the dynamics of cellular automata. In this article, we aim at structuring these problems, and find what makes them interesting for the study of intrinsic universality and quasi-orders induced by simulation relations.


2008 ◽  
Vol 8 (1&2) ◽  
pp. 82-95
Author(s):  
D. Gavinsky

Despite the apparent similarity between shared randomness and shared entanglement in the context of Communication Complexity, our understanding of the latter is not as good as of the former. In particular, there is no known ``entanglement analogue'' for the famous theorem by Newman, saying that the number of shared random bits required for solving any communication problem can be at most logarithmic in the input length (i.e., using more than $\asO[]{\log n}$ shared random bits would not reduce the complexity of an optimal solution). In this paper we prove that the same is not true for entanglement. We establish a wide range of tight (up to a polylogarithmic factor) entanglement vs.\ communication trade-offs for relational problems. The low end is:\ for any $t>2$, reducing shared entanglement from $log^tn$ to $\aso[]{log^{t-2}n}$ qubits can increase the communication required for solving a problem almost exponentially, from $\asO[]{log^tn}$ to $\asOm[]{\sqrt n}$. The high end is:\ for any $\eps>0$, reducing shared entanglement from $n^{1-\eps}\log n$ to $\aso[]{n^{1-\eps}/\log n}$ can increase the required communication from $\asO[]{n^{1-\eps}\log n}$ to $\asOm[]{n^{1-\eps/2}/\log n}$. The upper bounds are demonstrated via protocols which are \e{exact} and work in the \e{simultaneous message passing model}, while the lower bounds hold for \e{bounded-error protocols}, even in the more powerful \e{model of 1-way communication}. Our protocols use shared EPR pairs while the lower bounds apply to any sort of prior entanglement. We base the lower bounds on a strong direct product theorem for communication complexity of a certain class of relational problems. We believe that the theorem might have applications outside the scope of this work.


2009 ◽  
Vol 9 (5&6) ◽  
pp. 444-460
Author(s):  
Y.-Y. Shi ◽  
Y.-F. Zhu

A major open problem in communication complexity is whether or not quantum protocols can be exponentially more efficient than classical ones for computing a {\em total} Boolean function in the two-party interactive model. Razborov's result ({\em Izvestiya: Mathematics}, 67(1):145--159, 2002) implies the conjectured negative answer for functions $F$ of the following form: $F(x, y)=f_n(x_1\cdot y_1, x_2\cdot y_2, ..., x_n\cdot y_n)$, where $f_n$ is a {\em symmetric} Boolean function on $n$ Boolean inputs, and $x_i$, $y_i$ are the $i$'th bit of $x$ and $y$, respectively. His proof critically depends on the symmetry of $f_n$. We develop a lower-bound method that does not require symmetry and prove the conjecture for a broader class of functions. Each of those functions $F$ is the ``block-composition'' of a ``building block'' $g_k : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$, and an $f_n : \{0, 1\}^n \rightarrow \{0, 1\}$, such that $F(x, y) = f_n( g_k(x_1, y_1), g_k(x_2, y_2), ..., g_k(x_n, y_n) )$, where $x_i$ and $y_i$ are the $i$'th $k$-bit block of $x, y\in\{0, 1\}^{nk}$, respectively. We show that as long as g_k itself is "hard'' enough, its block-composition with an arbitrary f_n has polynomially related quantum and classical communication complexities. For example, when g_k is the Inner Product function with k=\Omega(\log n), the deterministic communication complexity of its block-composition with any f_n is asymptotically at most the quantum complexity to the power of 7.


2021 ◽  
Vol 52 (3) ◽  
pp. 11-13
Author(s):  
Michael Cadilhac

At its core, communication complexity is the study of the amount of information two parties need to exchange in order to compute a function. For instance, Alice receives a string of characters, Bob receives another, and they should decide whether these strings are the same with as few rounds of communication as possible. Multiple settings are conceivable, for instance with multiple parties or with randomness. Upper and lower bounds for communication problems rely on a wealth of mathematical tools, from probability theory to Ramsey theory, making this a complete and exciting topic. Further, communication complexity finds applications in different aspects of theoretical computer science, including circuit complexity and data structures. This usually requires to take a "communication" view of a problem, which in itself can be an eye-opening vantage point.


Sign in / Sign up

Export Citation Format

Share Document