scholarly journals Communication Complexity And Linearly Ordered Sets

2015 ◽  
Vol 29 (1) ◽  
pp. 93-117
Author(s):  
Mieczysław Kula ◽  
Małgorzata Serwecińska

AbstractThe paper is devoted to the communication complexity of lattice operations in linearly ordered finite sets. All well known techniques ([4, Chapter 1]) to determine the communication complexity of the infimum function in linear lattices disappoint, because a gap between the lower and upper bound is equal to O(log2n), where n is the cardinality of the lattice. Therefore our aim will be to investigate the communication complexity of the function more carefully. We consider a family of so called interval protocols and we construct the interval protocols for the infimum. We prove that the constructed protocols are optimal in the family of interval protocols. It is still open problem to compute the communication complexity of constructed protocols but the numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function.

2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


Alegal ◽  
2018 ◽  
pp. 15-37
Author(s):  
Annmaria M. Shimabuku

Chapter 1 presents a genealogy of sexual labor in Japan from licensed prostitution and the so-called “comfort woman” system of sexual slavery in the imperial period, through the state-organized system of prostitution for the Allied forces in the immediate postwar, and to the full-fledged emergence of independent streetwalkers thereafter. It links protest against private prostitution in the interwar period to aversion toward the streetwalker in the postwar period through an examination of Tosaka Jun’s Japanese Ideology. There, he defined Japanism as the symbolic communion between the family and state and showed how Japanists attacked private prostitution for purportedly interfering with the integrity of both. What was at stake was the ability of a budding middle class to manage the reproduction of labor power for the biopolitical state. Through Tosaka, this chapter delineates a mechanism of social defence amongst the middle class that targeted life thought to be unintelligible to the state such as the streetwalker and her mixed-race offspring. Further, it shows how this occurred through cultural productions such as anti-base reportage that focused obsessively on the figure of the streetwalker.


1954 ◽  
Vol 6 ◽  
pp. 525-528
Author(s):  
Truman Botts

Let P be a set partially ordered by a (reflexive, antisymmetric, and transitive) binary relation ≺. Let be the family of all subsets K of P having the property that x ∈ P and y ∈ K and y ≺ x imply x ∈ K.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Thomas P. Hayes

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience For every positive integer k, we construct an explicit family of functions f : \0, 1\(n) -\textgreater \0, 1\ which has (k + 1) - party communication complexity O(k) under every partition of the input bits into k + 1 parts of equal size, and k-party communication complexity Omega (n/k(4)2(k)) under every partition of the input bits into k parts. This improves an earlier hierarchy theorem due to V. Grolmusz. Our construction relies on known explicit constructions for a famous open problem of K. Zarankiewicz, namely, to find the maximum number of edges in a graph on n vertices that does not contain K-s,K-t as a subgraph.


10.37236/1370 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
E. Rodney Canfield ◽  
Sylvie Corteel ◽  
Carla D. Savage

Let ${\bf F}(n)$ be a family of partitions of $n$ and let ${\bf F}(n,d)$ denote the set of partitions in ${\bf F}(n)$ with Durfee square of size $d$. We define the Durfee polynomial of ${\bf F}(n)$ to be the polynomial $P_{{\bf F},n}= \sum |{\bf F}(n,d)|y^d$, where $ 0 \leq d \leq \lfloor \sqrt{n} \rfloor.$ The work in this paper is motivated by empirical evidence which suggests that for several families ${\bf F}$, all roots of the Durfee polynomial are real. Such a result would imply that the corresponding sequence of coefficients $\{|{\bf F}(n,d)|\}$ is log-concave and unimodal and that, over all partitions in ${\bf F}(n)$ for fixed $n$, the average size of the Durfee square, $a_{{\bf F}}(n)$, and the most likely size of the Durfee square, $m_{{\bf F}}(n)$, differ by less than 1. In this paper, we prove results in support of the conjecture that for the family of ordinary partitions, ${\bf P}(n)$, the Durfee polynomial has all roots real. Specifically, we find an asymptotic formula for $|{\bf P}(n,d)|$, deriving in the process a simple upper bound on the number of partitions of $n$ with at most $k$ parts which generalizes the upper bound of Erdös for $|{\bf P}(n)|$. We show that as $n$ tends to infinity, the sequence $\{|{\bf P}(n,d)|\},\ 1 \leq d \leq \sqrt{n},$ is asymptotically normal, unimodal, and log concave; in addition, formulas are found for $a_{{\bf P}}(n)$ and $m_{{\bf P}}(n)$ which differ asymptotically by at most 1. Experimental evidence also suggests that for several families ${\bf F}(n)$ which satisfy a recurrence of a certain form, $m_{{\bf F}}(n)$ grows as $c \sqrt{n}$, for an appropriate constant $c=c_{{\bf F}}$. We prove this under an assumption about the asymptotic form of $|{\bf F}(n,d)|$ and show how to produce, from recurrences for the $|{\bf F}(n,d)|$, analytical expressions for the constants $c_{{\bf F}}$ which agree numerically with the observed values.


Sign in / Sign up

Export Citation Format

Share Document