Mixing and decoherence in quantum walks on cycles

2006 ◽  
Vol 6 (3) ◽  
pp. 263-276 ◽  
Author(s):  
L. Fedichkin ◽  
D. Solenov ◽  
C. Tamon

We prove analytical results showing that decoherence can be useful for mixing time in a continuous-time quantum walk on finite cycles. This complements the numerical observations by Kendon and Tregenna (Physical Review A 67 (2003), 042315) of a similar phenomenon for discrete-time quantum walks. Our analytical treatment of continuous-time quantum walks includes a continuous monitoring of all vertices that induces the decoherence process. We identify the dynamics of the probability distribution and observe how mixing times undergo the transition from quantum to classical behavior as our decoherence parameter grows from zero to infinity. Our results show that, for small rates of decoherence, the mixing time improves linearly with decoherence, whereas for large rates of decoherence, the mixing time deteriorates linearly towards the classical limit. In the middle region of decoherence rates, our numerical data confirms the existence of a unique optimal rate for which the mixing time is minimized.

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


Author(s):  
NORIO KONNO

A quantum central limit theorem for a continuous-time quantum walk on a homogeneous tree is derived from quantum probability theory. As a consequence, a new type of limit theorems for another continuous-time walk introduced by the walk is presented. The limit density is similar to that given by a continuous-time quantum walk on the one-dimensional lattice.


2008 ◽  
Vol 06 (06) ◽  
pp. 1135-1148 ◽  
Author(s):  
ANA BEST ◽  
MARKUS KLIEGL ◽  
SHAWN MEAD-GLUCHACKI ◽  
CHRISTINO TAMON

We study continuous-time quantum walks on graphs which generalize the hypercube. The only known family of graphs whose quantum walk instantaneously mixes to uniform is the Hamming graphs with small arities. We show that quantum uniform mixing on the hypercube is robust under the addition of perfect matchings but not much else. Our specific results include: • The graph obtained by augmenting the hypercube with an additive matching x ↦ x ⊕ η is instantaneous uniform mixing whenever |η| is even, but with a slower mixing time. This strictly includes the result of Moore and Russell1 on the hypercube. • The class of Hamming graphs H(n,q) is not uniform mixing if and only if q ≥ 5. This is a tight characterization of quantum uniform mixing on Hamming graphs; previously, only the status of H(n,q) with q < 5 was known. • The bunkbed graph [Formula: see text] whose adjacency matrix is I ⊗ Qn + X ⊗ Af, where Af is a [Formula: see text]-circulant matrix defined by a Boolean function f, is not uniform mixing if the Fourier transform of f has support of size smaller than 2n-1. This explains why the hypercube is uniform mixing and why the join of two hypercubes is not. Our work exploits the rich spectral structure of the generalized hypercubes and relies heavily on Fourier analysis of group-circulants.


Author(s):  
Yan Wang

Stochastic diffusion is a general phenomenon observed in various national and engineering systems. It is typically modeled by either stochastic differential equation (SDE) or Fokker-Planck equation (FPE), which are equivalent approaches. Path integral is an accurate and effective method to solve FPEs. Yet, computational efficiency is the common challenge for path integral and other numerical methods, include time and space complexities. Previously, one-dimensional continuous-time quantum walk was used to simulate diffusion. By combining quantum diffusion and random diffusion, the new approach can accelerate the simulation with longer time steps than those in path integral. It was demonstrated that simulation can be dozens or even hundreds of times faster. In this paper, a new generic quantum operator is proposed to simulate drift-diffusion processes in high-dimensional space, which combines quantum walks on graphs with traditional path integral approaches. Probability amplitudes are computed efficiently by spectral analysis. The efficiency of the new method is demonstrated with stochastic resonance problems.


2012 ◽  
Vol 10 (02) ◽  
pp. 1250025 ◽  
Author(s):  
MÁRIA KIEFEROVÁ ◽  
DANIEL NAGAJ

We analyze continuous-time quantum walks on necklace graphs — cyclical graphs consisting of many copies of a smaller graph (pearl). Using a Bloch-type ansatz for the eigenfunctions, we block-diagonalize the Hamiltonian, reducing the effective size of the problem to the size of a single pearl. We then present a general approach for showing that the mixing time scales (with growing size of the necklace) similarly to that of a simple walk on a cycle. Finally, we present results for mixing on several necklace graphs.


2022 ◽  
Vol 22 (1&2) ◽  
pp. 53-85
Author(s):  
Thomas G. Wong

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.


2008 ◽  
Vol 06 (04) ◽  
pp. 945-957 ◽  
Author(s):  
S. SALIMI

In the present paper, we study the continuous-time quantum walk on quotient graphs. On such graphs, there is a straightforward reduction of the problem to a subspace that can be considerably smaller than the original one. Along the lines of reductions, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the spectral distribution associated with the adjacency matrix of graphs [Jafarizadeh and Salimi (Ann. Phys.322 (2007))], we show that the continuous-time quantum walk on original graph Γ induces a continuous-time quantum walk on quotient graph ΓH. Finally, for example, we investigate the continuous-time quantum walk on some quotient Cayley graphs.


2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Michael Manighalam ◽  
Mark Kon

Abstract Models of quantum walks which admit continuous time and continuous spacetime limits have recently led to quantum simulation schemes for simulating fermions in relativistic and nonrelativistic regimes (Molfetta GD, Arrighi P. A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019). This work continues the study of relationships between discrete time quantum walks (DTQW) and their ostensive continuum counterparts by developing a more general framework than was done in Molfetta and Arrighi (A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019) to evaluate the continuous time limit of these discrete quantum systems. Under this framework, we prove two constructive theorems concerning which internal discrete transitions (“coins”) admit nontrivial continuum limits. We additionally prove that the continuous space limit of the continuous time limit of the DTQW can only yield massless states which obey the Dirac equation. Finally, we demonstrate that for general coins the continuous time limit of the DTQW can be identified with the canonical continuous time quantum walk when the coin is allowed to transition through the continuous limit process.


Sign in / Sign up

Export Citation Format

Share Document