scholarly journals Design, synthesis, and structural characterization of helix-forming aliphatic homo-δ-peptides based on conformational restriction due to the structural characteristics of cyclopropane

Author(s):  
Mizuki Watanabe ◽  
Makoto Nagata ◽  
Ryohei Doi ◽  
Mai Uemura ◽  
Nanase Ochiai ◽  
...  

Considerable effort has been directed toward developing artificial peptide-based oligomers that fold into a specific secondary structure, i.e., peptide foldamers. To date, however, detailed structural analysis of crystals of δ-peptide foldamers consisting of aliphatic δ-amino acids, which have a more extended carbon backbone compared with well-studied β- and γ-amino acids, have not been reported. We rationally designed aliphatic homo-δ-peptide foldamers forming a stable helical structure utilizing a chiral cyclopropane δ-amino acid as a monomer unit whose conformation was tightly restricted by the structural characteristics of cyclopropane depending on its stereochemistry. We stereoselectively synthesized the cyclopropane δ-amino acid monomer and prepared its various homo-oligomers. Structural analysis of the homo-δ-peptides using nuclear magnetic resonance, circular dichroism, and infrared spectroscopy revealed that they form a stable 14-helical structure in solution. Furthermore, the effective conformational regulation of the backbone due to the characteristics of cyclopropane allowed us to achieve X-ray crystallographic analysis of the homo-δ-peptides, showing their common right-handed 14-helical structures. The helical structures were consistent with both those predicted by theoretical calculations and those obtained based on nuclear magnetic resonance spectroscopy in solution. A critical point is that the helical structures of these δ-peptides are theoretically predictable by calculations. To our knowledge, this is the first example of aliphatic homo-δ-peptide foldamers forming a stable helical structure both in solution and in crystal.

1971 ◽  
Vol 49 (5) ◽  
pp. 767-776 ◽  
Author(s):  
R. U. Lemieux ◽  
M. A. Barton

Nuclear magnetic resonance spectroscopy has been applied to the study of carbamate formation in solutions of amino acids and peptides in a carbonate-bicarbonate system. The possible conformations of these carbamates are discussed in terms of the n.m.r. data obtained. The n.m.r. parameters are reported for the diastereomers L-alanyl-L or D-phenylalanine and L-phenylalanyl-L or D-alanine and for the dipeptide glycyl-L-phenylalanine and their carbamates. The results are interpreted in terms of preferred rotamers about the Cα—Cβ bond of the phenylalanine residue and a β-type conformation of the peptide chain, wherein the two α-protons lie in the plane of the amide bond. All observations are in agreement with a shorter end to end distance in L,D- compared with L,L-dipeptides.


1998 ◽  
Vol 18 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Helle S. Waagepetersen ◽  
Inger J. Bakken ◽  
Orla M. Larsson ◽  
Ursala Sonnewald ◽  
Arne Schousboe

Primary cultures of mouse cerebral cortical neurons (GABAergic) were incubated for 4 hours in media without glucose containing 1.0 mmol/L [U-13C]lactate in the absence or presence of 0.5 mmol/L glutamine. Redissolved, lyophilized cell extracts were analyzed by 13C nuclear magnetic resonance spectroscopy to investigate neuronal metabolism of lactate and by HPLC for determination of the total amounts of glutamate (Glu), γ-aminobutyric acid (GABA), and aspartate (Asp). The 13C nuclear magnetic resonance spectra of cell extracts exhibited multiplets for Glu, GABA, and Asp, indicating pronounced recycling of labeled tricarboxylic acid cycle constituents. There was extensive incorporation of 13C label into amino acids in neurons incubated without glutamine, with the percent enrichments being approximately 60% for Glu and Asp, and 27% for GABA. When 0.5 mmol/L glutamine was added to the incubation medium, the enrichments for Asp, Glu, and GABA were 25%, 35%, and 25%, respectively. This strongly suggests that glutamine is readily converted to Glu and Asp but that conversion to GABA may be complex. The observation that enrichment in GABA was identical in the absence and presence of glutamine whereas cycling was decreased in the presence of glutamine indicates that only C-2 units derived from glutamine are used for GABA synthesis, that is, that metabolism through the tricarboxylic acid cycle is a prerequisite for GABA synthesis from glutamine. The current study gives further support to the hypothesis that cellular metabolism is compartmentalized and that lactate is an important fuel for neurons in terms of energy metabolism and extensively labels amino acids synthesized from tricarboxylic acid cycle intermediates (Asp and Glu) as well as the neurotransmitter in these neurons (GABA).


Sign in / Sign up

Export Citation Format

Share Document