scholarly journals A general arene C–H functionalization strategy via electron donor-acceptor complex photoactivation

Author(s):  
Abhishek Dewanji ◽  
Leendert van Dalsen ◽  
James Rossi-Ashton ◽  
Eloise Gasson ◽  
Giacomo Crisenza ◽  
...  

The photoactivation of electron donor-acceptor (EDA) complexes has emerged as a sustainable, selective and versa-tile strategy for the generation of radical species. However, when it comes to aryl radical formation, this strategy remains hamstrung by the electronic properties of the aromatic radical precursors and electron-deficient aryl halide acceptors are required. This has prevented the implementation of a general synthetic platform for aryl radical for-mation. Our study introduces triarylsulfonium salts as acceptors in photoactive EDA-complexes, used in combina-tion with catalytic amounts of newly-designed amine donors. The sulfonium salt label renders inconsequential the electronic features of the aryl radical precursor and, more importantly, it is installed regioselectively in native aro-matic compounds by C–H sulfenylation. Using this general, site-selective aromatic C–H functionalization approach, we have developed metal-free protocols for the alkylation and cyanation of arenes, and showcased their application in both the synthesis and the late-stage modification of pharmaceuticals and agrochemicals.

2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


1988 ◽  
Vol 21 (6) ◽  
pp. 1888-1890 ◽  
Author(s):  
Toshiyuki Uryu ◽  
Haruki Ohkawa ◽  
Takashi Furuichi ◽  
Ryuichi Oshima

2021 ◽  
Author(s):  
Chen Zhu ◽  
Serik Zhumagazy ◽  
Huifeng Yue ◽  
Magnus Rueping

Metal-free C-Se cross-couplings via the formation of electron-donor-acceptor (EDA) complexes have been developed. The visible-light induced reactions can be applied for the synthesis of a series of unsymmetrical diaryl selenides...


Synlett ◽  
2020 ◽  
Author(s):  
Racheal M. Spurlin ◽  
Amber L. Harris ◽  
Nathan T. Jui ◽  
Cameron J. Pratt

AbstractReported here are conditions for the construction of spirocyclic piperidines from linear aryl halide precursors. These conditions employ a strongly reducing organic photoredox catalyst in combination with a trialkylamine reductant to achieve formation of aryl radical species. Regioselective cyclization followed by hydrogen-atom transfer affords a range of complex spiropiperidines. This system operates efficiently under mild conditions without the need for toxic reagents or precious metals.


Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Vol 85 (15) ◽  
pp. 9820-9834
Author(s):  
José Tiago M. Correia ◽  
Gustavo Piva da Silva ◽  
Camila M. Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


Sign in / Sign up

Export Citation Format

Share Document