insulating liquid
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 34)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Letizia De Maria ◽  
Francesco Arcadio ◽  
Maria Pesavento ◽  
Antonella Profumo ◽  
Nunzio Cennamo ◽  
...  

2-FAL (2-furaldehyde) and furanic derivatives are the main by-products of the thermal degradation of cellulose paper insulation of power transformers’ windings. The detection of these compounds in the insulating oil of transformers is essential to investigate the ageing of the oil-paper system in order to avoid failures. To this aim, a non-conventional surface plasmon resonance (SPR) platform in plastic optical fiber (POF) was proposed for the monitoring of a biomimetic receptor specific to detect 2-FAL in transformer oil. In particular, the investigation was performed in mineral oil, which is currently the main insulating liquid for power transformers. A molecularly imprinted polymer (MIP) receptor was used, giving the sensor device a noticeable selectivity and many advantages with respect to the biological counterparts. Furthermore, the study was extended to safer and more environmentally acceptable insulating fluids representing an alternative to mineral oil (i.e., esters). To this aim, the principle and limitations of the SPR chemo-sensor performances have been discussed in this work.


2021 ◽  
Vol 141 (10) ◽  
pp. 560-566
Author(s):  
Niharika Baruah ◽  
Rohith Sangineni ◽  
Manas Chakraborty ◽  
Sisir Kumar Nayak

2021 ◽  
Vol 2 (2) ◽  
pp. 001-006
Author(s):  
Ansyori Ansyori ◽  
Irsyadi Yani ◽  
Eric Rahman

Isolation is a separator between conductors in electrical equipment that prevents flashover, resulting in a short circuit or electrical failure. Isolation is critical in electrical appliances, exceptionally High Voltage Power Equipment (HVPE), to ensure the safety of circuit breakers, capacitors, and transformers. In addition to being an isolator, the insulating liquid material also serves to cool the heat generated by electrical appliances. Isolator with mineral oil-based transformer has various environmental issues, including non-biodegradability, non-renewability, and rarity. Because it is environmentally safe and extensively used, virgin coconut oil (VCO) is an alternative transformer oil insulation. This study aims to determine the properties of Virgin Coconut Oil (VCO) breakdown voltage using the IEC 156 standard and oil temperature conditioning. According to the test results, the oil breakdown voltage before heating (at room temperature) is 14 kV, which is much below the IEC 156 standard, and the breakdown voltage after heating at 90 ° is 35 kV, and 110 ° is 40 kV, which is even higher than the IEC 156 requirement


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4234
Author(s):  
C. P. Hemantha Rajapaksha ◽  
M. D. Tharindupriya Gunathilaka ◽  
Suresh Narute ◽  
Hamad Albehaijan ◽  
Camilo Piedrahita ◽  
...  

The first study of the flexo-ionic effect, i.e., mechanical deformation-induced electric signal, of the recently discovered ionic liquid crystal elastomers (iLCEs) is reported. The measured flexo-ionic coefficients were found to strongly depend on the director alignment of the iLCE films and can be over 200 µC/m. This value is orders of magnitude higher than the flexo-electric coefficient found in insulating liquid crystals and is comparable to the well-developed ionic polymers (iEAPs). The shortest response times, i.e., the largest bandwidth of the flexo-ionic responses, is achieved in planar alignment, when the director is uniformly parallel to the substrates. These results render high potential for iLCE-based devices for applications in sensors and wearable micropower generators.


2021 ◽  
Vol 3 (1(59)) ◽  
pp. 50-55
Author(s):  
Liudmyla Pershevska ◽  
Oleksandr Drozdenko ◽  
Kateryna Drozdenko ◽  
Oleksandr Leiko

The object of research is thermal processes in Langevin-type piezoceramic electroacoustic transducers (PET), taking into account the housing. The piezoceramic electroacoustic transducers heat up during operation. Overheating of the converter leads to negative consequences, accompanied by a change in the parameters, characteristics of the device, as well as the failure of the converter. Or limitation on the duration and mode of operation, output power, current, amplitude and speed of oscillation of the converter. The paper investigates the effect of the housing on the temperature field of a Langevin-type PET by the finite element method, using modeling in SolidWorks. The results of temperature reduction of such cooling methods are shown: – filling the housing cavity with electrical insulating liquid, gas, a mixture of thermal paste; – use of holes in the housing; – changing the shape of the rear cover to have radiator side fins, vertical radiator fins, cylindrical radiator fins; – heat-resistant layer; – use of active air cooling at three different speeds. The most efficient 53 % and a uniform temperature field were found when filling with a mixture of thermal paste, but this solution is accompanied by additional experiments and a preparatory stage with the mixture. The cooling efficiency of 47 % was provided by active cooling – blowing with air, and this method requires additional equipment. Filling with insulating liquid gave a cooling efficiency of 27 % – an optimal result that does not require expensive investments. Slow blowing of the housing or adding only holes resulted in a decrease in the maximum heating temperature from 10 to 20 %, therefore, if the PET design allows the presence of holes, then it is necessary to rationally place them. Changing the shape of the back plate, heat-absorbing element, filling the housing with gas gave an efficiency decrease in the maximum temperature by 6–8 % compared to a closed housing with air. The research results make it possible to choose the optimal option for reducing the heating temperature of the Langevin-type PET to increase its efficiency and long-term trouble-free operation.


2021 ◽  
Author(s):  
Carl Wolmarans ◽  
Bruce Pahlavanpour ◽  
Robert Fairholm ◽  
Jayme Nunes
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3036
Author(s):  
Tobias Münster ◽  
Peter Werle ◽  
Kai Hämel ◽  
Jörg Preusel

The article presents issues related to the aging behavior of oil-paper insulations in transformers using different oil- and ester-based insulating fluids. Despite numerous conducted studies on the subject of oil-paper aging, the use of new insulating fluids is creating open questions. In addition, new liquids such as synthetic and natural esters, as well as oil of the newest generation, are being used. Furthermore, there is still little research on the formation of aging markers with this form of the dielectric. For this reason, in this contribution, oil-paper insulations with mineral oil-based insulating fluids, natural and synthetic esters, as well as oil from natural gas, are aged thermally accelerated at 130 °C over a duration of 15 weeks, by considering two cases of free-breathing and hermetically sealed transformers. Therefore, various aging markers are investigated to allow a condition assessment. The results show that differences exist between the fluids and design of the transformer, as in the aging rate of the paper and the formation of aging markers in the insulating liquid such as acids. These findings can be used to improve asset management strategies by a more precise determination of the aging state depending on the transformer type as well as the type of insulating fluid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew M. J. Edwards ◽  
Élfego Ruiz-Gutiérrez ◽  
Michael I. Newton ◽  
Glen McHale ◽  
Gary G. Wells ◽  
...  

AbstractThe breakup of a slender filament of liquid driven by surface tension is a classical fluid dynamics stability problem that is important in many situations where fine droplets are required. When the filament is resting on a flat solid surface which imposes wetting conditions the subtle interplay with the fluid dynamics makes the instability pathways and mode selection difficult to predict. Here, we show how controlling the static and dynamic wetting of a surface can lead to repeatable switching between a toroidal film of an electrically insulating liquid and patterns of droplets of well-defined dimensions confined to a ring geometry. Mode selection between instability pathways to these different final states is achieved by dielectrophoresis forces selectively polarising the dipoles at the solid-liquid interface and so changing both the mobility of the contact line and the partial wetting of the topologically distinct liquid domains. Our results provide insights into the wetting and stability of shaped liquid filaments in simple and complex geometries relevant to applications ranging from printing to digital microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document