scholarly journals Machine-Learning Coupled Cluster Properties through a Density Tensor Representation

Author(s):  
Benjamin Peyton ◽  
Connor Briggs ◽  
Ruhee D'Cunha ◽  
Johannes T. Margraf ◽  
Thomas Crawford

<div> <div> <div> <p>The introduction of machine-learning (ML) algorithms to quantum mechanics enables rapid evaluation of otherwise intractable expressions at the cost of prior training on appropriate benchmarks. Many computational bottlenecks in the evaluation of accurate electronic structure theory could potentially benefit from the application of such models, from reducing the complexity of the underlying wave function parameter space to circumventing the complications of solving the electronic Schrödinger equation entirely. Applications of ML to electronic structure have thus far been focused on learning molecular properties (mainly the energy) from geometric representations. While this line of study has been quite successful, highly accurate models typically require a “big data” approach with thousands of train- ing data points. Herein, we propose a general, systematically improvable scheme for wave function-based ML of arbitrary molecular properties, inspired by the underlying equations that govern the canonical approach to computing the properties. To this end, we combine the established ML machinery of the t-amplitude tensor representation with a new reduced density matrix representation. The resulting model provides quantitative accuracy in both the electronic energy and dipoles of small molecules using only a few dozen training points per system. </p> </div> </div> </div>

2020 ◽  
Author(s):  
Benjamin Peyton ◽  
Connor Briggs ◽  
Ruhee D'Cunha ◽  
Johannes T. Margraf ◽  
Thomas Crawford

<div> <div> <div> <p>The introduction of machine-learning (ML) algorithms to quantum mechanics enables rapid evaluation of otherwise intractable expressions at the cost of prior training on appropriate benchmarks. Many computational bottlenecks in the evaluation of accurate electronic structure theory could potentially benefit from the application of such models, from reducing the complexity of the underlying wave function parameter space to circumventing the complications of solving the electronic Schrödinger equation entirely. Applications of ML to electronic structure have thus far been focused on learning molecular properties (mainly the energy) from geometric representations. While this line of study has been quite successful, highly accurate models typically require a “big data” approach with thousands of train- ing data points. Herein, we propose a general, systematically improvable scheme for wave function-based ML of arbitrary molecular properties, inspired by the underlying equations that govern the canonical approach to computing the properties. To this end, we combine the established ML machinery of the t-amplitude tensor representation with a new reduced density matrix representation. The resulting model provides quantitative accuracy in both the electronic energy and dipoles of small molecules using only a few dozen training points per system. </p> </div> </div> </div>


2020 ◽  
Vol 124 (23) ◽  
pp. 4861-4871 ◽  
Author(s):  
Benjamin G. Peyton ◽  
Connor Briggs ◽  
Ruhee D’Cunha ◽  
Johannes T. Margraf ◽  
T. Daniel Crawford

2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
David A. Sáez ◽  
Stefan Vogt-Geisse ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Carboxylation reactions represent a very special class of chemical reactions that is characterized by the presence of a carbon dioxide (CO2) molecule as reactive species within its global chemical equation. These reactions work as fundamental gear to accomplish the CO2 fixation and thus to build up more complex molecules through different technological and biochemical processes. In this context, a correct description of the CO2 electronic structure turns out to be crucial to study the chemical and electronic properties associated with this kind of reactions. Here, a sys- tematic study of CO2 electronic structure and its contribution to different carboxylation reaction electronic energies has been carried out by means of several high-level ab-initio post-Hartree Fock (post-HF) and Density Functional Theory (DFT) calculations for a set of biochemistry and inorganic systems. We have found that for a correct description of the CO2 electronic correlation energy it is necessary to include post-CCSD(T) contributions (beyond the gold standard). These high-order excitations are required to properly describe the interactions of the four π-electrons as- sociated with the two degenerated π-molecular orbitals of the CO2 molecule. Likewise, our results show that in some reactions it is possible to obtain accurate reaction electronic energy values with computationally less demanding methods when the error in the electronic correlation energy com- pensates between reactants and products. Furthermore, the provided post-HF reference values allowed to validate different DFT exchange-correlation functionals combined with different basis sets for chemical reactions that are relevant in biochemical CO2 fixing enzymes.</p></div></div></div>


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 353
Author(s):  
Kun-Cheng Ke ◽  
Ming-Shyan Huang

Conventional methods for assessing the quality of components mass produced using injection molding are expensive and time-consuming or involve imprecise statistical process control parameters. A suitable alternative would be to employ machine learning to classify the quality of parts by using quality indices and quality grading. In this study, we used a multilayer perceptron (MLP) neural network along with a few quality indices to accurately predict the quality of “qualified” and “unqualified” geometric shapes of a finished product. These quality indices, which exhibited a strong correlation with part quality, were extracted from pressure curves and input into the MLP model for learning and prediction. By filtering outliers from the input data and converting the measured quality into quality grades used as output data, we increased the prediction accuracy of the MLP model and classified the quality of finished parts into various quality levels. The MLP model may misjudge datapoints in the “to-be-confirmed” area, which is located between the “qualified” and “unqualified” areas. We classified the “to-be-confirmed” area, and only the quality of products in this area were evaluated further, which reduced the cost of quality control considerably. An integrated circuit tray was manufactured to experimentally demonstrate the feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document