Modulating intramolecular electron and proton transfer kinetics for promoting carbon dioxide conversion

2022 ◽  
Author(s):  
Yajie Yuan ◽  
Yazhen Zhao ◽  
Shuai Yang ◽  
Sheng Han ◽  
Chenbao Lu ◽  
...  

A novel pentagon-heptagon paired azulene group which possesses large dipole moment is immobilized to porphyrin. The as–prepared azulene iron porphyrin exhibits narrower bandgap and higher electrocatalytic CO2 reduction activity than...

Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


Author(s):  
Yinyi Ma ◽  
Zemin Zhang ◽  
Xiao Jiang ◽  
Rongke Sun ◽  
Mingzheng Xie ◽  
...  

Photocatalytic reduction of carbon dioxide into chemical fuels has great practical significance in solving energy crisis and environmental pollution, but remains a big challenge owing to its low light absorption...


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 789
Author(s):  
Gang-Juan Lee ◽  
Yu-Hong Hou ◽  
Hsin-Ting Huang ◽  
Wenmin Wang ◽  
Cong Lyu ◽  
...  

A novel heterostructure consisting of Ru and Cu co-doped ZnS nanopowders (RCZS) into a MoS2-graphene hybrid (MSG) is successfully prepared by the microwave-assisted solvothermal approach. RCZS nanopowders are fabricated on the surface of MSG, which produces a nanoscale interfacial between RCZS and MSG. As the photo-excited electrons of RCZS can easily migrate to MoS2 through graphene by hindering the electron and hole (e– and h+) recombination, the photocatalytic activity could be improved by effective charge transfer. As RCZS are anchored onto the MSG, the photoluminescence intensity of the chalcogenide composite photocatalyst obviously decreases. In addition, a quaternary ruthenium and copper-based chalcogenide RCZS/MSG is able to improve the harvest and utilization of light. With the increase in the concentrations of Ru until 4 mol%, the band gap significantly decreases from 3.52 to 2.73 eV. At the same time, moderate modification by ruthenium can decrease the PL intensity compared to the pristine CZS/MSG sample, which indicates the enhancement of e– and h+ separation by Ru addition. The photocatalytic activity of as-synthesized chalcogenide composite photocatalysts is evaluated by the photocatalytic carbon dioxide reduction. Optimized operation conditions for carbon dioxide reduction have been performed, including the concentration of NaOH solution, the amount of RCZS/MSG photocatalyst, and the content of co-doped ruthenium. The doping of ruthenium would efficiently improve the performance of the photocatalytic activity for carbon dioxide reduction. The optimal conditions, such as the concentration of 2 M NaOH and the 0.5RCZS/MSG dosage of 0.05 g L–1, provide the maximum methane gas yield of 58.6 μmol h−1 g–1.


2020 ◽  
Vol 56 (62) ◽  
pp. 8798-8801 ◽  
Author(s):  
Meng-Jiao Sun ◽  
Zhi-Wei Gong ◽  
Jun-Dong Yi ◽  
Teng Zhang ◽  
Xiaodong Chen ◽  
...  

Diatomic Ni2 clusters embedded in a nitrogen-doped carbon composite show high electrocatalytic carbon dioxide reduction activity.


2020 ◽  
Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


2017 ◽  
Vol 1 (11) ◽  
Author(s):  
Annabelle P. Y. Wong ◽  
Wei Sun ◽  
Chenxi Qian ◽  
Abdinoor A. Jelle ◽  
Jia Jia ◽  
...  

2021 ◽  
Vol 65 (2) ◽  
pp. 197-206
Author(s):  
Annette Alcasabas ◽  
Peter R. Ellis ◽  
Iain Malone ◽  
Gareth Williams ◽  
Chris Zalitis

In this review, we consider a range of different technological approaches to carbon dioxide conversion, their current status and the molecules which each approach is best suited to making. Part II presents the photochemical, photoelectrochemical, plasma and microbial electrosynthetic routes to CO2 reduction and discusses the technological options together with proposals for future research needs from an industry perspective.


Sign in / Sign up

Export Citation Format

Share Document