scholarly journals Clickable Azide-Functionalized Bromo-Aryl-Aldehydes – Synthesis and Photophysical Characterization

Author(s):  
Dominik Göbel ◽  
Marius Friedrich ◽  
Enno Lork ◽  
Boris Nachtsheim

In this article we describe the functionalization of bromo aryl aldehyde-based fluorophores with azide functionalities, their Cu-catalyzed attachment to alkynes and the effect of these functionalizations on their emission properties.<br>

2020 ◽  
Author(s):  
Dominik Göbel ◽  
Marius Friedrich ◽  
Enno Lork ◽  
Boris Nachtsheim

In this article we describe the functionalization of bromo aryl aldehyde-based fluorophores with azide functionalities, their Cu-catalyzed attachment to alkynes and the effect of these functionalizations on their emission properties.<br>


2018 ◽  
Vol 21 (7) ◽  
pp. 526-532 ◽  
Author(s):  
Zahra Abdi Piralghar ◽  
Mohammad Mahmoodi Hashemi ◽  
Ali Ezabadi

Aim and Objective: In this work, we synthesized and characterized a novel Brönsted acidic ionic liquid from the reaction of N, N, N’, N’-tetramethylethylenediamine with chlorosulfonic acid and explored its catalytic activity in 1, 8-dioxo-octahydroxanthenes synthesis. Materials and Methods: Dimedone, aryl aldehydes, and the ionic liquid as the catalyst were reacted under solvent-free conditions. The progressive of the reaction was monitored by a thin layer of chromatography (ethyl acetate/n-hexane = 1/5). All products were characterized as the basis of their spectra data and melting point by comparison with those reported in the literature. Results: The prepared ionic liquid was successfully applied in the synthesis of 1, 8-dioxooctahydroxanthenes in good to high yields on the reaction of aryl aldehyde and dimedone at 120oC under solvent-free conditions. Conclusion: This research demonstrates that the catalyst is impressive for 1, 8-dioxo-octahydroxanthenes synthesis under solvent-free conditions.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Dong-Dong Yang ◽  
Gustavo M. de Billerbeck ◽  
Jin-jing Zhang ◽  
Frank Rosenzweig ◽  
Jean-Marie Francois

ABSTRACTHomology searches indicate thatSaccharomyces cerevisiaestrain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). YeastAADgenes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes,AAD4andAAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeastAADgenes are undergoing pseudogenization. The 5′ sequence ofAAD15has been deleted from the genome. Repair of anAAD3missense mutation at the catalytically essential Tyr73residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates thatAADgenes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeastAADgenes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeastAADgene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role forAADgenes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications.IMPORTANCEFunctional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the firstSaccharomyces cerevisiaegenome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-memberAADfamily. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenizedAADgenes via ancestral-state reconstruction. The phylogeny of yeastAADgenes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars,AADgenes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization.


2005 ◽  
Vol 2005 (6) ◽  
pp. 364-365 ◽  
Author(s):  
Ahmad Reza Khosropour ◽  
Mohammad Mehdi Khodaei ◽  
Hassan Moghanian

Piperazine as a new reagent for the condensation of aryl aldehydes and their bisulfite adducts with malonic acid are described which afford the corresponding cinnamic acids in excellent yields and short reaction times in the absence of solvents under microwave irradiation.


ChemInform ◽  
2005 ◽  
Vol 36 (45) ◽  
Author(s):  
Ahmad Reza Khosropour ◽  
Mohammad Mehdi Khodaei ◽  
Hassan Moghanian

2019 ◽  
Author(s):  
Leiyang Lv ◽  
Dianhu Zhu ◽  
Zihang Qiu ◽  
Jianbin Li ◽  
Chao-Jun Li

Hydroalkylation of unsaturated hydrocarbons with unstablized carbon nucleophiles is difficult and remains a major challenge. The disclosed examples so far mainly focused on the involvement of heteroatom and/or stabilized carbon nucleophiles as efficient reaction partners. Reported here is an unprecedented regioselective nickel-catalyzed hydroalkylation of 1,3-dienes with hydrazones, generated in situ from abundant aryl aldehydes and ketones and acted as both the sources of unstabilized carbanions and hydride. With this strategy, both terminal and sterically hindered internal dienes are hydroalkylated efficiently in a highly selective manner, thus providing a novel and reliable catalytic method to construct challenging C(sp3)-C(sp3) bonds.


Sign in / Sign up

Export Citation Format

Share Document