scholarly journals An In-Silico Study on Selected Organosulfur Compounds as Potential Drugs for SARS-CoV-2 Infection via Binding Multiple Drug Targets

Author(s):  
Liya Thurakkal ◽  
Satyam Singh ◽  
Sushabhan Sadhukhan ◽  
Mintu Porel

The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease, papain-like protease, spike protein, helicase and RNA dependent RNA polymerase. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute <i>in-vitro</i> and <i>in-vivo</i> analysis on SARS-CoV-2 in the future.<br>

2020 ◽  
Author(s):  
Liya Thurakkal ◽  
Satyam Singh ◽  
Sushabhan Sadhukhan ◽  
Mintu Porel

The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease, papain-like protease, spike protein, helicase and RNA dependent RNA polymerase. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute <i>in-vitro</i> and <i>in-vivo</i> analysis on SARS-CoV-2 in the future.<br>


2020 ◽  
Vol 7 ◽  
Author(s):  
Rounak Chourasia ◽  
Srichandan Padhi ◽  
Loreni Chiring Phukon ◽  
Md Minhajul Abedin ◽  
Sudhir P. Singh ◽  
...  

The COVID-19 pandemic caused by novel SARS-CoV-2 has resulted in an unprecedented loss of lives and economy around the world. In this study, search for potential inhibitors against two of the best characterized SARS-CoV-2 drug targets: S1 glycoprotein receptor-binding domain (RBD) and main protease (3CLPro), was carried out using the soy cheese peptides. A total of 1,420 peptides identified from the cheese peptidome produced using Lactobacillus delbrueckii WS4 were screened for antiviral activity by employing the web tools, AVPpred, and meta-iAVP. Molecular docking studies of the selected peptides revealed one potential peptide “KFVPKQPNMIL” that demonstrated strong affinity toward significant amino acid residues responsible for the host cell entry (RBD) and multiplication (3CLpro) of SARS-CoV-2. The peptide was also assessed for its ability to interact with the critical residues of S1 RBD and 3CLpro of other β-coronaviruses. High binding affinity was observed toward critical amino acids of both the targeted proteins in SARS-CoV, MERS-CoV, and HCoV-HKU1. The binding energy of KFVPKQPNMIL against RBD and 3CLpro of the four viruses ranged from −8.45 to −26.8 kcal/mol and −15.22 to −22.85 kcal/mol, respectively. The findings conclude that cheese, produced by using Lb. delbrueckii WS4, could be explored as a prophylactic food for SARS-CoV-2 and related viruses. In addition, the multi-target inhibitor peptide, which effectively inhibited both the viral proteins, could further be used as a terminus a quo for the in vitro and in vivo function against SARS-CoV-2.


2017 ◽  
Vol 37 (19) ◽  
Author(s):  
Maho Takahashi ◽  
Yanping Li ◽  
Tara J. Dillon ◽  
Yumi Kariya ◽  
Philip J. S. Stork

ABSTRACT The activation of Raf kinases by the small GTPase Ras requires two major sets of phosphorylations. One set lies within the activation loop, and the other lies within the N-terminal acidic region (N region). In the most abundant isoform of Raf, C-Raf, N-region phosphorylations occur on serine 338 (S338) and tyrosine 341 (Y341) and are thought to provide allosteric activation of the Raf dimer. We show that the phosphorylations of these N-region sites does not require C-Raf dimerization, but rather, they precede dimerization. One of these phosphorylations (phospho-Y341) is required for C-Raf dimerization, and this action can be replicated by phosphomimetic mutants both in vivo and in vitro. The role of the phosphorylation of Y341 in promoting Raf dimerization is distinct from its well-known function in facilitating S338 phosphorylation. In Ras mutant pancreatic cancer cell lines, the phosphorylation and dimerization of C-Raf are basally elevated. Dimerization is thought to contribute to their elevated growth rate through their activation of the mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase [ERK]) signaling cascade. Blocking the tyrosine phosphorylation of C-Raf with Src family inhibitors blocks growth, basal dimerization, and ERK activation in these cells. We suggest that the kinases mediating C-Raf Y341 phosphorylation are potential candidate drug targets in selected Ras-dependent cancers.


2017 ◽  
Vol 234 (2) ◽  
pp. R81-R97 ◽  
Author(s):  
Colin P Sibley

Placental dysfunction underlies major obstetric diseases such as pre-eclampsia and fetal growth restriction (FGR). Whilst there has been a little progress in prophylaxis, there are still no treatments for placental dysfunction in normal obstetric practice. However, a combination of increasingly well-described in vitro systems for studying the human placenta, together with the availability of more appropriate animal models of pre-eclampsia and FGR, has facilitated a recent surge in work aimed at repurposing drugs and therapies, developed for other conditions, as treatments for placental dysfunction. This review: (1) highlights potential candidate drug targets in the placenta – effectors of improved uteroplacental blood flow, anti-oxidants, heme oxygenase induction, inhibition of HIF, induction of cholesterol synthesis pathways, increasing insulin-like growth factor II availability; (2) proposes an experimental pathway for taking a potential drug or treatment for placental dysfunction from concept through to early phase clinical trials, utilizing techniques for studying the human placenta in vitro and small animal models, particularly the mouse, for in vivo studies; (3) describes the data underpinning sildenafil citrate and adenovirus expressing vascular endothelial growth as potential treatments for placental dysfunction and summarizes recent research on other potential treatments. The importance of sharing information from such studies even when no effect is found, or there is an adverse outcome, is highlighted. Finally, the use of adenoviral vectors or nanoparticle carriers coated with homing peptides to selectively target drugs to the placenta is highlighted: such delivery systems could improve efficacy and reduce the side effects of treating the dysfunctional placenta.


2020 ◽  
Vol 8 (Spl-1-SARS-CoV-2) ◽  
pp. S202-S209
Author(s):  
Novi Yantih ◽  
◽  
Linda Erlina ◽  
Esti Mulatsari ◽  
Wahono Sumaryono ◽  
...  

The emerging coronavirus, Covid-19, has become a worldwide pandemic. The existence of the Covid-19 virus pandemic in the world demands the need to identify and characterize new drug candidates to address the health problem caused by the Covid-19 virus. This study aims to find candidate compounds from strychnine bush (Strychnos lucida), pineapple (Ananas comosus), and ginger (Zingiber officinale) acting as the Mpro receptor inhibitor on Covid-19 virus based on docking modeling. The docking process is carried out using a protein with the pdb code 6LU7, a crystal main protein protease (Mpro) of the Covid-19 which binds to the N3 molecule as an inhibitor based on computational tests. The docking process is conducted using N3 comparison, favipiravir, active metabolite remdesivir, and hydroxychloroquine. The docking result shows that the compounds, ananas 26, zingiberenol, and zingiberol have lower docking energy compared to native ligand (N3), favipiravir, active metabolite remdesivir, and hydroxychloroquine. Ananas 26 compound has the most hydrogen bonds with the Mpro active amino acid residue of the Covid-19 virus, namely: HIS163, ASN142, ASP187, TYR54, and HIS41. This makes Ananas 26 more stable in binding pocket enzymes and more effective in inhibiting enzyme performance than other compounds and positive controls. Potential candidate compounds as SARS-CoV-2 Main Protease inhibitors, ananas 26 from pineapple and zingiberenol as well as zingiberol from ginger, can then undergo potential inhibitor tests by in vitro and in vivo methods on SARS-CoV-2.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2020 ◽  
Vol 17 (2) ◽  
pp. 125-132
Author(s):  
Marjanu Hikmah Elias ◽  
Noraziah Nordin ◽  
Nazefah Abdul Hamid

Background: Chronic Myeloid Leukaemia (CML) is associated with the BCRABL1 gene, which plays a central role in the pathogenesis of CML. Thus, it is crucial to suppress the expression of BCR-ABL1 in the treatment of CML. MicroRNA is known to be a gene expression regulator and is thus a good candidate for molecularly targeted therapy for CML. Objective: This study aims to identify the microRNAs from edible plants targeting the 3’ Untranslated Region (3’UTR) of BCR-ABL1. Methods: In this in silico analysis, the sequence of 3’UTR of BCR-ABL1 was obtained from Ensembl Genome Browser. PsRNATarget Analysis Server and MicroRNA Target Prediction (miRTar) Server were used to identify miRNAs that have binding conformity with 3’UTR of BCR-ABL1. The MiRBase database was used to validate the species of plants expressing the miRNAs. The RNAfold web server and RNA COMPOSER were used for secondary and tertiary structure prediction, respectively. Results: In silico analyses revealed that cpa-miR8154, csi-miR3952, gma-miR4414-5p, mdm-miR482c, osa-miR1858a and osa-miR1858b show binding conformity with strong molecular interaction towards 3’UTR region of BCR-ABL1. However, only cpa-miR- 8154, osa-miR-1858a and osa-miR-1858b showed good target site accessibility. Conclusion: It is predicted that these microRNAs post-transcriptionally inhibit the BCRABL1 gene and thus could be a potential molecular targeted therapy for CML. However, further studies involving in vitro, in vivo and functional analyses need to be carried out to determine the ability of these miRNAs to form the basis for targeted therapy for CML.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


Sign in / Sign up

Export Citation Format

Share Document