scholarly journals Pharmacodynamic, pharmacokinetic, and phase 1a study of bisthianostat, a novel histone deacetylase inhibitor, for the treatment of relapsed or refractory multiple myeloma

Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2615-2622 ◽  
Author(s):  
Laurence Catley ◽  
Ellen Weisberg ◽  
Yu-Tzu Tai ◽  
Peter Atadja ◽  
Stacy Remiszewski ◽  
...  

Abstract Histone deacetylase (HDAC) inhibitors are emerging as a promising new treatment strategy in hematologic malignancies. Here we show that NVP-LAQ824, a novel hydroxamic acid derivative, induces apoptosis at physiologically achievable concentrations (median inhibitory concentration [IC50] of 100 nM at 24 hours) in multiple myeloma (MM) cell lines resistant to conventional therapies. MM.1S myeloma cell proliferation was also inhibited when cocultured with bone marrow stromal cells, demonstrating ability to overcome the stimulatory effects of the bone marrow microenvironment. Importantly, NVP-LAQ824 also inhibited patient MM cell growth in a dose- and time-dependent manner. NVP-LAQ824-induced apoptotic signaling includes up-regulation of p21, caspase cascade activation, and poly (adenosine diphosphate [ADP]) ribose (PARP) cleavage. Apoptosis was confirmed with cell cycle analysis and annexin-propidium iodide staining. Interestingly, treatment of MM cells with NVPLAQ824 also led to proteasome inhibition, as determined by reduced proteasome chymotrypsin-like activity and increased levels of cellular polyubiquitin conjugates. Finally, a study using NVP-LAQ824 in a preclinical murine myeloma model provides in vivo relevance to our in vitro studies. Taken together, these findings provide the framework for NVP-LAQ824 as a novel therapeutic in MM. (Blood. 2003;102:2615-2622)


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3478-3478
Author(s):  
Dale Wright ◽  
Shannon L. Winski ◽  
Deborah Anderson ◽  
Patrice Lee ◽  
Mark Munson ◽  
...  

Abstract Multiple myeloma (MM) is characterized by the expansion of malignant plasma cells within the bone marrow. Their growth, survival, and migration are mediated in part via cytokines. Interleukin 6 (IL-6) is necessary for sustaining the in vitro growth of many MM cell lines and enhancing the proliferation of explanted human myeloma cells. The mitogen-activated protein kinase family member, p38, is activated by cytokines and growth factors and plays a significant role in inflammatory diseases. However, its role in the pathogenesis of multiple myeloma is poorly understood. Specific p38 inhibitors inhibit paracrine MM cell growth which is associated with IL-6 and VEGF secretion from bone marrow stromal cells (BMSCs). Furthermore, p38 inhibition blocks TNF-alpha-induced IL-6 secretion in BMSCs, thereby further inhibiting MM cell growth and survival. Although these data suggest an important role for p38 in MM, the direct effects of p38 inhibiton on MM has not been extensively explored. Therefore, we investigated the effects of p38 inhibition on in vitro and in vivo IL-6 production and MM cell growth in vivo after lipopolysaccaride (LPS) stimulation. LPS has been shown to induce various cytokines, including TNF-alpha and IL-6, via the p38 pathway. ARRY-797, an orally bioavailable, small molecule inhibitor of p38 directly inhibited LPS-induced IL-6 production from RPMI-8226 (IC50 = 100 pM) in vitro. In SCID-beige mice, LPS (3 μg/kg) induced IL-6 (7897 ± 827 pg/mL) and TNF-alpha (1922 ± 282 pg/mL) after 2 hours and these cytokines were inhibited by oral administration of ARRY-797 (30 mg/kg) by 91% and 95%, respectively. In MM xenograft models, ARRY-797 (30 mg/kg, BID, PO) inhibited RPMI 8226 tumor growth by 72% as a single agent and by 56% when LPS was administered to stimulate growth in vivo. In addition, ARRY-797 inhibited LPS-induced phosphorylation of p38 in RPMI-8226 xenografts. Together, these data support a role for p38 in IL-6-mediated growth of multiple myelomas. To our knowledge, ARRY-797 is the first small molecule p38 inhibitor to demonstrate single agent activity in a MM xenograft model and it has been advanced into preclinical development.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Ruosi Yao ◽  
Xiaoyang Sun ◽  
Yu Xie ◽  
Xiaoshen Sun ◽  
Yao Yao ◽  
...  

Increasing evidence shows that c-Myc oncoprotein is tightly associated with multiple myeloma (MM) progression. Herein, we identified compound 7594-0035, which is a novel inhibitor that specifically targets c-Myc. It was identified from the ChemDiv compound database by molecular docking-based, high-throughput virtual screening. Compound 7594-0035 inhibited MM cell proliferation in vitro, induced cell cycle G2-phase arrest, and triggered MM cell death by disturbing the stability of c-Myc protein. Additionally, we also found that compound 7594-0035 overcame bortezomib (BTZ) drug resistance and increased the killing effect on MM cells in combination with BTZ. The severe combined immune deficiency (SCID) mouse xenograft model revealed that compound 7594-0035 partially decreased the primary tumor growth of Roswell Park Memorial Institute (RPMI)-8226 cells in vivo. The novel small molecular compound 7594-0035 described in the present study that targets c-Myc protein is likely to be a promising therapeutic agent for relapsed/refractory MM.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4341-4351 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Judith M. Runnels ◽  
Costas Pitsillides ◽  
Anne-Sophie Moreau ◽  
Feda Azab ◽  
...  

Abstract The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4922-4922 ◽  
Author(s):  
Vito J. Palombella ◽  
Emmanuel Normant ◽  
Janid Ali ◽  
John Barrett ◽  
Michael Foley ◽  
...  

Abstract IPI-504 is a novel inhibitor of Hsp90 based on the geldanamycin pharmacophore. When placed in rat, monkey, and human blood, IPI-504 rapidly converts to the known and well-studied compound 17-allylamino-17-demethoxy-geldanamycin (17-AAG). 17-AAG is the subject of multiple clinical trials for the treatment of hematologic and solid tumors. However, 17-AAG suffers from poor aqueous solubility necessitating the use of sub-optimal formulations to deliver this agent to patients. IPI-504 is over 1000-fold more soluble than 17-AAG in aqueous solution. In vitro, both 17-AAG and IPI-504 bind tightly to, and selectively inhibit Hsp90 derived from cancer cells. The cytotoxic effect of IPI-504, as well as its ability to stimulate the degradation of Hsp90 client proteins and increase the intracellular levels Hsp70, were monitored in two human multiple myeloma cells lines (RPMI-8226 and MM1.S). The effects of IPI-504 were compared to 17-AAG. We demonstrate that the actions of IPI-504 are bioequivalent to 17-AAG and that both compounds induce apoptosis in these cells and stimulate the degradation of HER2 and c-Raf. In addition, both agents stimulate Hsp70 protein levels. In all cases the EC50s are virtually the same for both molecules (~200–400 nM). Furthermore, IPI-504 inhibits the secretion of immunoglobulin light chain from the RPMI-8226 multiple myeloma cells (EC50 ~300 nM). Importantly, IPI-504 is active in tumor xenograft models of multiple myeloma. The data indicate that active metabolites of IPI-504 accumulate in these xenografts long after these metabolites are cleared from the plasma compartment, suggesting that they preferentially accumulate in tumor cells based on their increased affinity to Hsp90 derived from tumor cells. In conclusion, we have developed IPI-504 as a novel, potent inhibitor of Hsp90 with greatly increased solubility over 17-AAG, and that IPI-504 is an active anti-tumor agent in vitro and in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3660-3660 ◽  
Author(s):  
Xiaojing Wang ◽  
Anthony L. Sinn ◽  
Attaya Suvannasankha ◽  
Colin D. Crean ◽  
Li Chen ◽  
...  

Abstract ENMD-2076 is a novel, orally-active molecule that has been shown to have significant activity against Aurora A kinase as well as multiple receptor tyrosine kinases (RTK). We investigated the single agent activity of ENMD-2076 against MM cells in vitro and in vivo, and in combination with lenalidomide. ENMD-2076 free base showed significant cytotoxicity against MM cells with a mean LC50 of 3.84±0.86 μM at 48 hours in vitro. Cytotoxicity was associated with cleavage of caspase 3, 8, 9 and PARP, and loss of mitochondrial membrane potential as early as 6 hours. ENMD-2076 free base inhibited c-kit, FGFR-1, 3 and VEGFR1 and subsequently inhibition of downstream targets phosphorylated (p)-BAD, p-Foxo1a and p-GSK-3β was observed at 6 hours. NOD/SCID mice implanted with H929 human plasmacytoma xenografts and treated for 30 days with 50, 100, 200mg/kg/d ENMD-2076 showed a dose-dependent inhibition of tumor growth (Figure 1), with minimal toxicity as assessed by the stable weight of treated animals. Immunohistochemical staining of tumors from sacrificed animals showed significant reduction in Ki67 at all dose levels of treatment compared to control tumors. An increase in cleaved caspase-3 was observed on Western blot from the lysates of H929 tumors obtained from treated animals. ENMD-2076 free base also showed synergistic cytotoxic activity when combined with lenalidomide against H929, MM1.R and MM1.S cells as assessed by MTT assay and Annexin-V/PI staining. Using the Chou-Talalay method, the combination indices (CI) were < 1 for all three cell lines across a range of concentrations of ENMD-2076 free base (0.25–1.0 μM) plus lenalidomide (2.5–10 μM) indicating synergistic activity (CI=0.362 H929; CI=0.315 MM1.R; CI=0.415 MM1.S). Our results provide rationale for the investigation of ENMD-2076 alone and in combination with lenalidomide in patients with multiple myeloma. Figure Figure


2020 ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

ABSTRACTToll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. The selectivity profile distinguished DN052 from all other TLR agonists currently in clinical development. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase I clinical trials.


Author(s):  
Cinzia Lanzi ◽  
Enrica Favini ◽  
Laura Dal Bo ◽  
Monica Tortoreto ◽  
Noemi Arrighetti ◽  
...  

Abstract Background Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. Methods Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. Results SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. Conclusions The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

Abstract Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3068-3068
Author(s):  
Ye Yang ◽  
Mengjie Guo ◽  
Chunyan Gu

Purpose: In recent years, with the emergence of targeted proteasome inhibitors (PIs), the treatment of multiple myeloma (MM) has made great progress and significantly improves the survival rate of patients. However, MM remains an incurable disease, mainly due to the recurrence of drug resistance. The constitutive photomorphogenic 1 (RFWD2, also known as COP1), is closely related to the occurrence and development of tumors, but its role in MM is largely unknown. This study was aimed to explore the mechanism of RFWD2 on cell proliferation and resistance to proteasome inhibitor in MM. Experimental Design: Using gene expression profiling (GEP) samples, we verified the relation of RFWD2 to MM patients' survival and drug-resistance. The effect of RFWD2 on cell proliferation was confirmed by MTT and cell cycle analysis in RFWD2-overexpressed and RFWD2-knockdown MM cells. MTT and apoptosis experiments were performed to evaluate whether RFWD2 influenced the sensitivity of MM cells to several chemotherapy drugs. MM xenografts were established in immunodeficient NOD/SCID mice by injecting wild-type or RFWD2 over-expression MM cells with drug intervention. The mechanism of drug resistance was elucidated by analyzing the association of RFWD2 with E3 ligase of p27. Bortezomib-resistant RPMI 8226 cells were used to construct RFWD2 knockdown cells, which were injected into NOD/SCID mice to assess the effect of RFWD2 on bortezomib resistance in vivo. Results: RFWD2 expression was closely related to poor outcome, relapse and bortezomib resistance in MM patients' GEP cohorts. Elevated RFWD2 induced cell proliferation, while decreased RFWD2 inhibited cell proliferation and induced apoptosis in MM cells. RFWD2-overexpression MM cells resulted in PIs resistance, however, no chemotherapy resistance to adriamycin and dexamethasone was observed in vitro. In addition, overexpressing RFWD2 in MM cells led to bortezomib resistance rather than adriamycin resistance in myeloma xenograft mouse model. RFWD2 regulated the ubiquitination degradation of P27 by interacting with RCHY1 ubiquitin ligase. The knockdown of RFWD2 in bortezomib-resistant RPMI 8226 cells overcame bortezomib resistance in vivo. Conclusions: Our data demonstrate that elevated RFWD2 induces MM cell proliferation and resistance to PIs, but not to adriamycin and dexamethasone both in vitro and in vivo through mediating the ubiquitination of p27. Collectively, RFWD2 is a novel promising therapeutic target in MM. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document