scholarly journals Unlocking the Potential of Single Atoms Loaded Geobacter Hybrid Catalyst as Bifunctional Electrocatalyst for Water Splitting

Author(s):  
Srikanth Pedireddy ◽  
Mahesh Kumar Ravva ◽  
Chandrani Nayak ◽  
Dalaver Anjum ◽  
Shambhu Nath Jha ◽  
...  

Single-atom metal (SA-M) catalysts with high dispersion of active metal sites allow maximum atomic utilization. However, conventional synthesis of SA-M catalysts involves high-temperature treatments, leading to a low yield with random distribution of atoms. Herein, a facile method to synthesize SA-M catalysts (M = Fe, Ir, Pt, Ru, Cu, or Pd) in a single step at ambient temperature, using the extracellular electron transfer capability of Geobacter sulfurreducens (GS), is presented. Interestingly, the SA-M is coordinated to three nitrogen (N) atoms adopting an MN3 on the surface of GS. Dry samples of SA-Ir@GS without further heat treatments show exceptionally high activity for OER when compared to benchmark IrO2 catalyst and comparable HER activity to commercial 10 wt.% Pt/C. The SA-Ir@GS electrocatalyst exhibits the best water‐splitting performance compared to other SA-M@GS, showing a low applied potential of 1.65 V to achieve 10 mA cm−2 in 1.0 M KOH solution with cycling over 5 h. The density functional calculations reveal that the large adsorption energy of H2O and moderate adsorption energies of reactants and reaction intermediates for SA-Ir@GS favorably improve its activity. This nature-based facile synthesis method of SA-M at room temperature provides a versatile platform for the preparation of other transition metal SA-M catalysts for various energy-related applications by merely altering the metal precursors. <br>

2020 ◽  
Author(s):  
Srikanth Pedireddy ◽  
Mahesh Kumar Ravva ◽  
Chandrani Nayak ◽  
Dalaver Anjum ◽  
Shambhu Nath Jha ◽  
...  

Single-atom metal (SA-M) catalysts with high dispersion of active metal sites allow maximum atomic utilization. However, conventional synthesis of SA-M catalysts involves high-temperature treatments, leading to a low yield with random distribution of atoms. Herein, a facile method to synthesize SA-M catalysts (M = Fe, Ir, Pt, Ru, Cu, or Pd) in a single step at ambient temperature, using the extracellular electron transfer capability of Geobacter sulfurreducens (GS), is presented. Interestingly, the SA-M is coordinated to three nitrogen (N) atoms adopting an MN3 on the surface of GS. Dry samples of SA-Ir@GS without further heat treatments show exceptionally high activity for OER when compared to benchmark IrO2 catalyst and comparable HER activity to commercial 10 wt.% Pt/C. The SA-Ir@GS electrocatalyst exhibits the best water‐splitting performance compared to other SA-M@GS, showing a low applied potential of 1.65 V to achieve 10 mA cm−2 in 1.0 M KOH solution with cycling over 5 h. The density functional calculations reveal that the large adsorption energy of H2O and moderate adsorption energies of reactants and reaction intermediates for SA-Ir@GS favorably improve its activity. This nature-based facile synthesis method of SA-M at room temperature provides a versatile platform for the preparation of other transition metal SA-M catalysts for various energy-related applications by merely altering the metal precursors. <br>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


Author(s):  
Yuli Ma ◽  
Fangming Jin ◽  
Yun Hang Hu

Catalysts play a critical role in oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) for energy storage, conversion, and utilization. Herein, first-principle density functional theory (DFT) calculations demonstrated that...


Author(s):  
Yongzhen Jiang ◽  
Wenxu Zou ◽  
Yadong Li ◽  
Yingxiang Cai

Single-atom catalysis is the new frontier of heterogeneous catalysis, and have attracted considerable attention for they exhibit great potential in hydrogen evolution to mitigate energy crisis and environmental issues. The...


Nanoscale ◽  
2019 ◽  
Vol 11 (39) ◽  
pp. 18169-18175 ◽  
Author(s):  
Yanan Zhou ◽  
Guoping Gao ◽  
Jun Kang ◽  
Wei Chu ◽  
Lin-Wang Wang

Ni@C9N4 performs as a promising bifunctional electrocatalyst with N and Ni atoms as the catalytic active sites for HER and OER, with calculated hydrogen adsorption Gibbs free energy (ΔGH*) of −0.04 eV and OER overpotential (ηOER) of 0.31 V.


2020 ◽  
Vol 22 (20) ◽  
pp. 11392-11399 ◽  
Author(s):  
Zhibo Luo ◽  
Zhijie Wang ◽  
Jia Li ◽  
Kang Yang ◽  
Gang Zhou

In our Ru1–N1/TiO2 single-atom catalyst system, isolated Ru1 atoms act as active sites for the reduction of protons, and the TiO2 support offers the photogenerated carriers, allowing for a hydrogen evolution activity comparable to that of Pd.


Sign in / Sign up

Export Citation Format

Share Document