scholarly journals Leveraging Surface Siloxide Electronics to Enhance Relaxation Properties of a Single-Molecule Magnet

Author(s):  
Maciej Korzynski ◽  
Zachariah Berkson ◽  
Boris Le Guennic ◽  
Olivier Cador ◽  
Christophe Copéret

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as applications in quantum computing and spintronics. To date, the most successful SMMs are organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to sensitivity of magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchorages not only enable successful immobilization, but also lead to two-orders-of-magnitude increase in magnetization relaxation times and provide magnetic site dilution.

2021 ◽  
Author(s):  
Maciej Korzynski ◽  
Zachariah Berkson ◽  
Boris Le Guennic ◽  
Olivier Cador ◽  
Christophe Copéret

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as applications in quantum computing and spintronics. To date, the most successful SMMs are organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to sensitivity of magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchorages not only enable successful immobilization, but also lead to two-orders-of-magnitude increase in magnetization relaxation times and provide magnetic site dilution.


2021 ◽  
Author(s):  
Maciej Korzynski ◽  
Zachariah Berkson ◽  
Boris Le Guennic ◽  
Olivier Cador ◽  
Christophe Copéret

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as applications in quantum computing and spintronics. To date, the most successful SMMs are organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to sensitivity of magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchorages not only enable successful immobilization, but also lead to two-orders-of-magnitude increase in magnetization relaxation times.<br>


2020 ◽  
Author(s):  
Maciej Korzynski ◽  
Zachariah Berkson ◽  
Boris Le Guennic ◽  
Olivier Cador ◽  
Christophe Copéret

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as applications in quantum computing and spintronics. To date, the most successful SMMs are organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to sensitivity of magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchorages not only enable successful immobilization, but also lead to two-orders-of-magnitude increase in magnetization relaxation times and provide magnetic site dilution.


2014 ◽  
Vol 70 (a1) ◽  
pp. C274-C274
Author(s):  
Bing-Wu Wang ◽  
Zhe-Ming Wang ◽  
Song Gao

The single-molecule magnets (SMMs) are attracting the increasing interesting due to their potential applications in high density information storage, quantum computing, molecular spintronics, and magnetic refrigeration. This field provides scientists a possible access into the crossover of the classical and quantum world, and a wonderful model to study the fascinating magnetic properties between microscopic and macroscopic materials, such as slow magnetization relaxation and quantum tunneling effect. After the milestone discovery of the first single-molecule magnets (SMMs) Mn12ac, many new SMMs were structurally and magnetically characterized. The most studied systems are mainly traditional coordination compounds with polynuclear structures. However, for the difficulties in the control of magnetic anisotropy and exchange coupling interactions of the cluster-type molecules, Mn12ac molecule is still one of the most important SMMs with the high relaxation barrier. From 2011 [1-3], we explored an organometallic sandwich molecule, Cp*ErCOT(Cp* = pentamethylcyclopenta-dienide; COT = cyclooctatetraenide), which behaves as a single-ion magnets, into the field of molecular nanomagnets. It opened a door of SMMs to the chemists in organometallic chemistry. Recently, we found some new sandwich or half-sandwich lanthanide organometallic molecules could also show the slow relaxation of magnetization. We hope these systems can provide new understandings of slow magnetic relaxation and new clues on the design and synthesis of molecular nanomagnets. This work was supported by NSFC, the National Basic Research Program of China.


2020 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Joydev Acharya ◽  
Pankaj Kalita ◽  
Vadapalli Chandrasekhar

Single-molecule magnets involving monometallic 4f complexes have been investigated extensively in last two decades to understand the factors that govern the slow magnetization relaxation behavior in these complexes and to establish a magneto-structural correlation. The prime goal in this direction is to suppress the temperature independent quantum tunneling of magnetization (QTM) effect via fine-tuning the coordination geometry/microenvironment. Among the various coordination geometries that have been pursued, complexes containing high coordination number around Ln(III) are sparse. Herein, we present a summary of the various synthetic strategies that were used for the assembly of 10- and 12-coordinated Ln(III) complexes. The magnetic properties of such complexes are also described.


2003 ◽  
Vol 125 (12) ◽  
pp. 3576-3588 ◽  
Author(s):  
Monica Soler ◽  
Wolfgang Wernsdorfer ◽  
Khalil A. Abboud ◽  
John C. Huffman ◽  
Ernest R. Davidson ◽  
...  

2021 ◽  
Author(s):  
Jun-Jie Hu ◽  
Yan Peng ◽  
Sui-Jun Liu ◽  
He-Rui Wen

The molecular magnetorefrigerant materials for low-temperature magnetic refrigeration and single-molecule magnets for high-density information storage and quantum computing have received extensive attention from chemists and magnetic experts. Lanthanide ions with...


2015 ◽  
Vol 22 (05) ◽  
pp. 1550060 ◽  
Author(s):  
YUAN LUO ◽  
LAN LUO ◽  
KAI SUN ◽  
MIN-LONG TAO ◽  
JUN-ZHONG WANG

Single-molecule magnets (SMMs) have unique magnetic properties such as quantum tunneling of magnetization and quantum coherent oscillation, which have potential applications in quantum computation and information storage. In this paper, using the tip-deposition method, we have grafted individual Fe 4 molecules onto the semi-metallic Bi (111) surface. Low temperature scanning tunneling microscope (LT-STM) was used to characterize the molecular morphology and electronic structures. It was found that individual Fe 4 molecules reveal a triangle shape, which is consistent with the molecular structure of Fe 4. Scanning tunneling spectroscopy (STS) analysis indicated that the HOMO–LUMO gap is 0.49 eV. These studies provide direct information about the adsorption of individual SMMs on semi-metal surfaces.


Sign in / Sign up

Export Citation Format

Share Document