surface deposition
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 69)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Martin W Lo ◽  
Alberto A Amarilla ◽  
John D Lee ◽  
Eduardo A Albornoz ◽  
Naphak Modhiran ◽  
...  

The complement system has been heavily implicated in severe COVID-19 with clinical studies revealing widespread gene induction, deposition, and activation. However, the mechanism by which complement is activated in this disease remains incompletely understood. Herein we examined the relationship between SARS-CoV-2 and complement by inoculating the virus in lepirudin-anticoagulated human blood. This caused progressive C5a production after 30 minutes and 24 hours, which was blocked entirely by inhibitors for factor B, C3, C5, and heparan sulfate. However, this phenomenon could not be replicated in cell-free plasma, highlighting the requirement for cell surface deposition of complement and interactions with heparan sulfate. Additional functional analysis revealed that complement-dependent granulocyte and monocyte activation was delayed. Indeed, C5aR1 internalisation and CD11b upregulation on these cells only occurred after 24 hours. Thus, SARS-CoV-2 is a non-canonical complement activator that triggers the alternative pathway through interactions with heparan sulfate.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 127
Author(s):  
Hendradi Hardhienata ◽  
Salim Faci ◽  
Adalberto Alejo-Molina ◽  
Mohammad Ryan Priatama ◽  
Husin Alatas ◽  
...  

It is well understood that nonlinear optical (NLO) phenomena are deeply related to the material’s symmetry. Mathematically, the material symmetry can be described in terms of the nonzero parameters in the nonlinear susceptibility tensors. Generally, more complex structures involve more nonzero parameters in the tensor. The number of parameters increases rapidly if higher NLO orders are considered, complicating the physical analysis. Conventionally, these parameters are obtained via abstract symmetry analysis, e.g., group theory (GT). This work presents a novel theoretical analysis to approach the nonlinear tensor using the simplified bond hyperpolarizability model (SBHM) and compare it with GT. Our analysis is based on a light–matter interaction classical phenomenological physical framework. Rather than just looking at the symmetry of the crystal, the model applies physical considerations requiring fewer independent parameters in the tensor than GT. Such a simplification significantly improves the determination of the surface–bulk SHG contribution factors, which cannot be extracted from the experiment alone. We also show for the case of perovskite that the SHG contribution can be addressed solely from their surface dipoles with only one independent component in the tensor. Therefore, this work may open the path for a similar analysis in other complicated semiconductor surfaces and structures in the future, with potential applications to nanoscale surface characterization and real-time surface deposition monitoring.


Author(s):  
Matthew J. Ziegler ◽  
Elizabeth Huang ◽  
Selamawit Bekele ◽  
Emily Reesey ◽  
Pam Tolomeo ◽  
...  

Abstract Background: The spatial and temporal extent of SARS-CoV-2 environmental contamination has not been precisely defined. We sought to elucidate contamination of different surface types and how contamination changes over time. Methods: We sampled surfaces longitudinally within COVID-19 patient rooms, performed quantitative RT-PCR for the detection of SARS-CoV-2 RNA, and modeled distance, time, and severity of illness on the probability of detecting SARS-CoV-2 using a mixed-effects binomial model. Results: The probability of detecting SARS-CoV-2 RNA in a patient room did not vary with distance. However, we found that surface type predicted probability of detection, with floors and high-touch surfaces having the highest probability of detection (floors odds ratio (OR) 67.8 (95% CrI 36.3 to 131); high-touch elevated OR 7.39 (95% CrI 4.31 to 13.1)). Increased surface contamination was observed in room where patients required high-flow oxygen, positive airway pressure, or mechanical ventilation (OR 1.6 (95% CrI 1.03 to 2.53)). The probability of elevated surface contamination decayed with prolonged hospitalization, but the probability of floor detection increased with duration of the local pandemic wave. Conclusions: Distance from patient’s bed did not predict SARS-CoV-2 RNA deposition in patient rooms, but surface type, severity of illness, and time from local pandemic wave predicted surface deposition.


2021 ◽  
Vol 23 (6) ◽  
pp. 300-306
Author(s):  
N.O. Sitkov ◽  
◽  
T.M. Zimina ◽  
V.V. Luchinin ◽  
A.A. Kolobov ◽  
...  

The development and comparative study of technologies for manufacturing elements of hybrid biosensor systems intended for express biomedical analysis has been carried out. The technological process included the formation of the relief of microfluidic channels, chemical modification of their working surface, deposition of solid-state phosphor layers, sealing of the system, installation of inlet ports and packaging.


2021 ◽  
Vol 21 (24) ◽  
pp. 18263-18269
Author(s):  
Peter A. Taylor

Abstract. Turbulent boundary layer concepts of constant flux layers and surface roughness lengths are extended to include aerosols and the effects of gravitational settling. Interactions between aerosols and the Earth's surface are represented via a roughness length for aerosol which will generally be different from the roughness lengths for momentum, heat or water vapour. Gravitational settling will impact vertical profiles and the surface deposition of aerosols, including fog droplets. Simple profile solutions are possible in neutral and stably stratified atmospheric surface boundary layers. These profiles can be used to predict deposition velocities and to illustrate the dependence of deposition velocity on reference height, friction velocity and gravitational settling velocity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2076-2076
Author(s):  
Ayiesha Barnes ◽  
Sanjay Khandelwal ◽  
Simone Sartoretto ◽  
Grace M Lee ◽  
Sooho Myoung ◽  
...  

Abstract Background: Recent studies show that ultra-large immune complexes consisting of IgG and platelet factor 4 and heparin (P+H) potently activate complement and facilitate complement dependent activation of cellular FcgRIIA (PMID 34189574). In whole blood assays using KKO, a monoclonal anti-PF4/heparin antibody, or antibodies from patients with heparin induced thrombocytopenia (HIT), we showed that classical pathway (CP) inhibition reduced immune complex-mediated complement activation (C3c and soluble C5b-9 generation), cell surface deposition of immune complexes and cellular activation. Aims: As previous studies suggest that the alternative pathway (AP) provides significant amplification (>80%) of the CP pathway, (PMID: 15544620) we compared the effects of AP, CP, and CP/AP inhibitors by KKO and HIT immune complexes in whole blood. Methods: Inhibitors of the CP (BBK32, a borrelia protein inhibitor to C1r), AP (anti-factor B antibody (α-fB), or Factor D (fD inhibitor or fD-INH) Alexion Pharmaceuticals, Boston, MA) or combined AP/CP (C1-esterase inhibitor, C1-INH, Berinert, CSL Behring; or soluble complement receptor 1, sCR1, Alexion) were tested in hemolytic assays of CP or AP to confirm pathway specificity. To examine effects of CP or AP inhibition on complement activation by immune complexes consisting of KKO or HIT IgG, whole blood was pre-incubated with CP, AP or CP/AP inhibitors prior to addition of P+H ± KKO/HIT IgG or isotype controls. WB was incubated for 45 minutes at 37ºC followed by addition of 10mM EDTA to quench further complement activation. Complement activation products (C3c and sC5b-9) and neutrophil degranulation (MMP9) markers were measured using commercial immunoassays. Effects of complement inhibitors on cellular deposition of immune complexes was examined by flow, using previously described methods (PMID 34189574) using fluorescently labeled anti-C3c antibody (Quidel, San Diego, CA) and anti-mouse or human IgG (Biolegend, San Diego, CA). Results: Consistent with prior publications (PMID: 26808924), BBK32 showed marked reduction CP, but not AP-dependent hemolytic assays. The converse was true of AP inhibitors: α-fB and fD-INH prevented AP-dependent, but not CP-dependent hemolysis (data not shown). C1-INH and sCR1 showed activity in both CP- and AP-dependent assays. The CP or CP/AP inhibitors showed potent inhibition of C3c and sC5b-9 generation by KKO and HIT immune complexes, while AP inhibitors had no effect (Figure A for KKO C3c generation; and Table 1 for KKO/HIT C3c generation; sC5b-9 data not shown). For a given CP or CP/AP inhibitor, the concentrations leading to 50% inhibition (IC 50) were generally comparable for KKO and HIT immune complexes for C3c (Figure A and Table 1) and sC5b-9 generation (data not shown), with potency as follows: C1-INH>>BBK32>sCR1 (Table 1). On the other hand, the AP inhibitors, α-fB and fD-INH, showed no inhibitory activity in C3c (Figure A and Table 1)/sC5b-9 (data not shown) generation by KKO or HIT ULICs. As our recent studies indicate that complement activation is critical to cell surface deposition of immune complexes and cellular activation via FcgRIIA, we examined effects of complement inhibitors on IC deposition on B-cells and MMP9 release from neutrophils. CP or CP/AP inhibitors, but not AP inhibitors, reduced cell surface binding of immune complexes (Figure B) as well as MMP9 release (Figure C and Table 1). Conclusion: Together, these studies demonstrate that the AP has a minimal role in supporting complement activation by KKO/HIT ULICs. Future studies should examine CP inhibition as a therapeutic strategy for modulating the cellular activating effects of HIT antibodies. To what extent these findings apply to other immune complexes and/or CP activators requires further study. Funding Agency: NIH HL151730; α-fB antibody, fD inhibitor and sCR1 was provided by Alexion Pharmaceuticals, Boston, MA. BBK32 was provided by Dr. Brandon Garcia, East Carolina University, Greenville, NC. Figure 1 Figure 1. Disclosures Cines: Dova: Consultancy; Rigel: Consultancy; Treeline: Consultancy; Arch Oncol: Consultancy; Jannsen: Consultancy; Taventa: Consultancy; Principia: Other: Data Safety Monitoring Board. OffLabel Disclosure: C1-esterase inhibitor off label for HIT


2021 ◽  
pp. 257-270
Author(s):  
Kun Zhu ◽  
Xiao Yu ◽  
Guoqiang Xu ◽  
Jiankun Li ◽  
Chunlei Zhang ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Chujin Ruan ◽  
Josep Ramoneda ◽  
Guowei Chen ◽  
David R. Johnson ◽  
Gang Wang

AbstractConjugative plasmids bestow important traits to microbial communities, such as virulence, antibiotic resistance, pollutant biotransformation, and biotechnology-relevant functions. While the biological mechanisms and determinants of plasmid conjugation are well established, the underlying physical and ecological driving forces remain unclear. Microbial communities often inhabit unsaturated environments, such as soils and host surfaces (e.g., skin, teeth, leaves, roots), where water evaporation and associated small-scale hydrodynamic processes frequently occur at numerous air-water and solid-water interfaces. Here, we hypothesized that evaporation can induce water flows with profound effects on the spatial distribution and surface deposition of cells, and consequently on the extent of plasmid conjugation. Using droplet experiments with an antibiotic resistance-encoding plasmid, we show that evaporation-induced water flows reduce cell-cell distances and significantly increase the extent of plasmid conjugation. Counterintuitively, we found that evaporation results in lower expression levels of conjugation-related genes. This negative relationship between the extent of plasmid conjugation and the expression of conjugation-related genes could be attributed to increased conjugation efficiency during evaporation. This study provides new insights into the physical and ecological determinants of plasmid conjugation, with important implications for understanding the spread and proliferation of plasmid-encoded traits.


2021 ◽  
Vol 21 (19) ◽  
pp. 14687-14702
Author(s):  
Peter A. Taylor ◽  
Zheqi Chen ◽  
Li Cheng ◽  
Soudeh Afsharian ◽  
Wensong Weng ◽  
...  

Abstract. There have been many studies of marine fog, some using Weather Research and Forecasting (WRF) and other models. Several model studies report overpredictions of near-surface liquid water content (Qc), leading to visibility estimates that are too low. This study has found the same. One possible cause of this overestimation could be the treatment of a surface deposition rate of fog droplets at the underlying water surface. Most models, including the Advanced Research Weather Research and Forecasting (WRF-ARW) Model, available from the National Center for Atmospheric Research (NCAR), take account of gravitational settling of cloud droplets throughout the domain and at the surface. However, there should be an additional deposition as turbulence causes fog droplets to collide and coalesce with the water surface. A water surface, or any wet surface, can then be an effective sink for fog water droplets. This process can be parameterized as an additional deposition velocity with a model that could be based on a roughness length for water droplets, z0c, that may be significantly larger than the roughness length for water vapour, z0q. This can be implemented in WRF either as a variant of the Katata scheme for deposition to vegetation or via direct modifications in boundary-layer modules.


Sign in / Sign up

Export Citation Format

Share Document