scholarly journals Engineering Entangled Photon Pairs with Metal-Organic Frameworks

Author(s):  
Ruben Fritz ◽  
Yamil J. Colon ◽  
Felipe Herrera

<div><div><div><p>The discovery and design of new materials with competitive optical frequency conversion effi- ciencies can accelerate the development of scalable photonic quantum technologies. Metal-organic framework (MOF) crystals without inversion symmetry have shown potential for these applications, given their nonlinear optical properties and the combinatorial number of possibilities for MOF self-assembly. In order to accelerate the discovery of MOF materials for quantum optical technolo- gies, scalable computational assessment tools are needed. We develop a multi-scale methodology to study the wavefunction of entangled photon pairs generated by selected non-centrosymmetric MOF crystals via spontaneous parametric down-conversion (SPDC). Starting from an optimized crystal structure, we predict the shape of the G(2) intensity correlation function for coincidence detection of the entangled pairs, produced under conditions of collinear type-I phase matching. The effective nonlinearities and photon pair correlation times obtained are comparable to those available with inorganic crystal standards. Our work thus provides fundamental insights into the structure-property relationships for entangled photon generation with metal-organic frameworks, paving the way for the automated discovery of molecular materials for optical quantum technology.</p></div></div></div>

2020 ◽  
Author(s):  
Ruben Fritz ◽  
Yamil J. Colon ◽  
Felipe Herrera

<div><div><div><p>The discovery and design of new materials with competitive optical frequency conversion effi- ciencies can accelerate the development of scalable photonic quantum technologies. Metal-organic framework (MOF) crystals without inversion symmetry have shown potential for these applications, given their nonlinear optical properties and the combinatorial number of possibilities for MOF self-assembly. In order to accelerate the discovery of MOF materials for quantum optical technolo- gies, scalable computational assessment tools are needed. We develop a multi-scale methodology to study the wavefunction of entangled photon pairs generated by selected non-centrosymmetric MOF crystals via spontaneous parametric down-conversion (SPDC). Starting from an optimized crystal structure, we predict the shape of the G(2) intensity correlation function for coincidence detection of the entangled pairs, produced under conditions of collinear type-I phase matching. The effective nonlinearities and photon pair correlation times obtained are comparable to those available with inorganic crystal standards. Our work thus provides fundamental insights into the structure-property relationships for entangled photon generation with metal-organic frameworks, paving the way for the automated discovery of molecular materials for optical quantum technology.</p></div></div></div>


2021 ◽  
Author(s):  
Rubén A. Fritz ◽  
Yamil J. Colón ◽  
Felipe Herrera

The discovery and design of new materials with competitive optical frequency conversion efficiencies can accelerate the development of scalable photonic quantum technologies.


Author(s):  
Rubén Alejandro Fritz Fritz ◽  
Felipe Andres Herrera Urbina ◽  
Yamil J. Colón

2021 ◽  
Vol 27 (19) ◽  
Author(s):  
Syed Meheboob Elahi ◽  
Mukul Raizada ◽  
Pradip Kumar Sahu ◽  
Sanjit Konar

CrystEngComm ◽  
2021 ◽  
Author(s):  
Olaya Paz Gomez ◽  
Rosa Carballo ◽  
Ana Belen Lago ◽  
Ezequiel M. Vazquez-Lopez

Polymorphism is a common phenomenon in crystalline materials but it has barely been studied in the field of metal organic frameworks. The study of polymorphism is useful to investigate structure–property...


2008 ◽  
Vol 61 (10) ◽  
pp. 813 ◽  
Author(s):  
En-Cui Yang ◽  
Qing-Qing Liang ◽  
Xiu-Guang Wang ◽  
Xiao-Jun Zhao

To explore the effects of a co-ligand on the construction of mixed-ligand metal–organic frameworks (MOFs), two new triazole-based complexes with a flexible dicarboxylate as a co-ligand, {[Zn4(trz)4(gt)2(H2O)2](H2O)2}n 1 and {[Cd2(trz)2(gt)(H2O)2](H2O)4}n 2 (Htrz = 1,2,4-triazole; H2gt = glutaric acid), were synthesized and their structures were fully characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray crystallography. Their thermal stability and luminescence emissions were further investigated to establish their structure–property relationship. Crystal structure determination showed that 1 is a neutral two-dimensional pillared-bilayer network consisting of 14-membered hydrophobic channels, whereas 2 is an infinite three-dimensional framework constructed from tetranuclear [Cd4(trz)4]4+ subunits. Interestingly, the overall structure of both MOFs can be solely supported by ZnII/CdII and trz anions, and were further consolidated by the introduction of a flexible gt co-ligand. In addition, the carboxylate groups in the co-ligand can also serve as a weak O–H···O hydrogen-bond acceptor to capture guest water molecules. The synchronous weight-loss behaviour of trz and gt anions presented by thermogravometric curves suggest their cooperative contributions to the thermal stability of the MOFs. In contrast, the fluorescence emissions of two complexes are significantly dominated by the core trz ligand, rather than the gt co-ligand and metal ions.


RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14260-14267 ◽  
Author(s):  
Gemechis D. Degaga ◽  
Ravindra Pandey ◽  
Chansi Gupta ◽  
Lalit Bharadwaj

The structure–property relationships of pristine and functionalized Zn-BTC (Zn3(BTC)2) metal–organic frameworks are investigated.


2006 ◽  
Vol 927 ◽  
Author(s):  
Daejin Kim ◽  
Tae Bum Lee ◽  
Seung-Hoon Choi ◽  
Sang Beom Choi ◽  
Jihye Yoon ◽  
...  

ABSTRACTWe reported the relationship between the structure of metal-organic frameworks (MOFs) and the capability of hydrogen uptake. The QSPR (quantitative structure-property relationship) method was used to find out the factor which affects the adsorption amount of hydrogen molecule on the MOFs. The derivatives which were substituted by functionalized aromatic rings showed the effect of polarization within the identical topology of the frame and similar lattice constants. And the typical series of MOFs with different topology of the frames were investigated to examine the influence of topological change. For the consideration of saturation of hydrogen adsorption amounts, the result of fitting the adsorption curve with Langmuir-Freundlich equation was used to the QSPR approach additionally. We found out that the polar surface area plays a key role on the adsorption amount of hydrogen molecule into the MOFs and the specific value of electrostatic potential surface was calculated to indicate the interaction between hydrogen molecule and MOF.


Sign in / Sign up

Export Citation Format

Share Document