Two Novel Triazole-Based Metal - Organic Frameworks Consolidated by a Flexible Dicarboxylate Co-ligand: Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties

2008 ◽  
Vol 61 (10) ◽  
pp. 813 ◽  
Author(s):  
En-Cui Yang ◽  
Qing-Qing Liang ◽  
Xiu-Guang Wang ◽  
Xiao-Jun Zhao

To explore the effects of a co-ligand on the construction of mixed-ligand metal–organic frameworks (MOFs), two new triazole-based complexes with a flexible dicarboxylate as a co-ligand, {[Zn4(trz)4(gt)2(H2O)2](H2O)2}n 1 and {[Cd2(trz)2(gt)(H2O)2](H2O)4}n 2 (Htrz = 1,2,4-triazole; H2gt = glutaric acid), were synthesized and their structures were fully characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray crystallography. Their thermal stability and luminescence emissions were further investigated to establish their structure–property relationship. Crystal structure determination showed that 1 is a neutral two-dimensional pillared-bilayer network consisting of 14-membered hydrophobic channels, whereas 2 is an infinite three-dimensional framework constructed from tetranuclear [Cd4(trz)4]4+ subunits. Interestingly, the overall structure of both MOFs can be solely supported by ZnII/CdII and trz anions, and were further consolidated by the introduction of a flexible gt co-ligand. In addition, the carboxylate groups in the co-ligand can also serve as a weak O–H···O hydrogen-bond acceptor to capture guest water molecules. The synchronous weight-loss behaviour of trz and gt anions presented by thermogravometric curves suggest their cooperative contributions to the thermal stability of the MOFs. In contrast, the fluorescence emissions of two complexes are significantly dominated by the core trz ligand, rather than the gt co-ligand and metal ions.

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 408 ◽  
Author(s):  
Ruo-Yan Li ◽  
Xiao-Xin An ◽  
Juan-Li Wu ◽  
You-Peng Zhang ◽  
Wen-Kui Dong

An unexpected trinuclear Co(II) complex, [Co3(L2)2(μ-OAc)2(CH3OH)2]·2CH3OH (H2L2 = 4,4′-dibromo-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol) constructed from a half-Salamo-based ligand (HL1 = 2-[O-(1-ethyloxyamide)]oxime-4-bromophenol) and Co(OAc)2·4H2O, has been synthesized and characterized by elemental analyses, infrared spectra (IR), UV-Vis spectra, X-ray crystallography and Hirshfeld surface analysis. The Co(II) complex contains three Co(II) atoms, two completely deprotonated (L2)2− units, two bridged acetate molecules, two coordinated methanol molecules and two crystalline methanol molecules, and finally, a three-dimensional supramolecular structure with infinite extension was formed. Interestingly, during the formation of the Co(II) complex, the ligand changed from half-Salamo-like to a symmetrical single Salamo-like ligand due to the bonding interactions of the molecules. In addition, the antimicrobial activities of HL1 and its Co(II) complex were also investigated.


2015 ◽  
Vol 71 (7) ◽  
pp. 618-622 ◽  
Author(s):  
Shao-Ming Ying ◽  
Jing-Jing Ru ◽  
Wu-Kui Luo

Metal–organic frameworks (MOFs) have potentially useful applications and an intriguing variety of architectures and topologies. Two homochiral coordination polymers have been synthesized by the hydrothermal method, namely poly[(μ-N-benzyl-L-phenylalaninato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C16H16NO2)(HCOO)]n, (1), and poly[(μ-N-benzyl-L-leucinato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C13H18NO2)(HCOO)]n, (2), and studied by single-crystal X-ray diffraction, elemental analyses, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) each have a two-dimensional layer structure, with the benzyl or isobutyl groups of the ligands directed towards the interlayer interface. Photoluminescence investigations show that both (1) and (2) display a strong emission in the blue region.


2018 ◽  
Vol 73 (5) ◽  
pp. 311-317
Author(s):  
Zhao Xu ◽  
Fengqin An ◽  
Xiaohui Ma ◽  
Huiliang Zhou ◽  
Weiming Song ◽  
...  

AbstractBased on 2-(4-carboxyphenyl)imidazo[4,5-f]-1,10-phenanthroline (HNCP) and 2,5-thiophenedicarboxylate (TDC2−) ligands, three new lanthanide-containing (Sm, Nd, and Pr) compounds, [Sm(NCP)(TDC)]n (1), [Nd(NCP)(TDC)]n·2n(H2O)0.5 (2), and [Pr(NCP)(TDC)]n·n(H2O)0.5 (3), have been synthesized using the hydrothermal method and structurally characterized using single-crystal X-ray diffraction. Structural analyses have revealed that compounds 1–3 are 3D isostructural metal-organic frameworks in which the [Ln2(COO)4] dimers can be regarded as 6-connecting nodes, and the TDC2− and NCP− ligands are simplified as connectors to achieve the double interspersed 3D networks with the point symbol {412·63}. Thermogravimetric analysis has illustrated that the rigid architecture contributes to superior thermal stability with a thermal decomposition temperature of more than 400°C for the resulting metal-organic frameworks.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3055
Author(s):  
Dana Bejan ◽  
Lucian Gabriel Bahrin ◽  
Sergiu Shova ◽  
Narcisa Laura Marangoci ◽  
Ülkü Kökҫam-Demir ◽  
...  

New metal-organic frameworks (MOF) with lanthanum(III), cerium(III), neodymium(III), europium(III), gadolinium(III), dysprosium(III), and holmium(III)] and the ligand precursor 1,3,5-tris(4-carboxyphenyl)-2,4,6-trimethylbenzene (H3L) were synthesized under solvothermal conditions. Single crystal x-ray analysis confirmed the formation of three-dimensional frameworks of [LnL(H2O)2]n·xDMF·yH2O for Ln = La, Ce, and Nd. From the nitrogen sorption experiments, the compounds showed permanent porosity with Brunauer-Emmett-Teller (BET) surface areas of about 400 m2/g, and thermal stability up to 500 °C. Further investigations showed that these Ln-MOFs exhibit catalytic activity, paving the way for potential applications within the field of catalysis.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


Sign in / Sign up

Export Citation Format

Share Document