scholarly journals Old Arsenal to Combat New Enemy: Repurposing of Commercially Available FDA Approved Drugs Against Main Protease of SARS-CoV2.

Author(s):  
Gagandeep Singh ◽  
vishal srivastava ◽  
Ritpratik Mishra ◽  
Gaurav Goel ◽  
Tapan Chaudhuri

<p> In lack of vaccination and therapeutic drugs, the ongoing COVID-19 pandemic affected millions of people, causing 1,018,957 deaths worldwide (World health organization; 1<sup>st</sup> October 2020). The conventional drug design pipeline for effective and safer drug development is a costly and time-intensive affair. It takes around ten years in general from identifying a clinical candidate to get the approvals for actual applications. An effective way to cut short drug design pipeline in such emergency cases could be the repurposing of already approved drugs against novel targets. Here in this work, we explored the structure-based drug screening approach to find potential inhibitors of SARS-CoV2 main protease (M<sup>pro</sup>) from the library of already FDA approved commercially available drugs. The site-specific and blind docking studies, in combination, suggest three potential inhibitors of M<sup>pro</sup>, Ergotamine (ZINC000052955754), Nilotinib (ZINC000006716957) and Naldemedine (ZINC000100378061). Molecular dynamics (MD) simulations and binding free energy calculations using the MMPBSA method further reinforced the efficiency of the screened M<sup>pro</sup> inhibitor candidates. The work yields enough evidence to conduct rigorous experimental validation of these drugs before utilizing them for the therapeutic management of SARS-CoV2 infection.</p>

2020 ◽  
Author(s):  
Gagandeep Singh ◽  
vishal srivastava ◽  
Ritpratik Mishra ◽  
Gaurav Goel ◽  
Tapan Chaudhuri

<p> In lack of vaccination and therapeutic drugs, the ongoing COVID-19 pandemic affected millions of people, causing 1,018,957 deaths worldwide (World health organization; 1<sup>st</sup> October 2020). The conventional drug design pipeline for effective and safer drug development is a costly and time-intensive affair. It takes around ten years in general from identifying a clinical candidate to get the approvals for actual applications. An effective way to cut short drug design pipeline in such emergency cases could be the repurposing of already approved drugs against novel targets. Here in this work, we explored the structure-based drug screening approach to find potential inhibitors of SARS-CoV2 main protease (M<sup>pro</sup>) from the library of already FDA approved commercially available drugs. The site-specific and blind docking studies, in combination, suggest three potential inhibitors of M<sup>pro</sup>, Ergotamine (ZINC000052955754), Nilotinib (ZINC000006716957) and Naldemedine (ZINC000100378061). Molecular dynamics (MD) simulations and binding free energy calculations using the MMPBSA method further reinforced the efficiency of the screened M<sup>pro</sup> inhibitor candidates. The work yields enough evidence to conduct rigorous experimental validation of these drugs before utilizing them for the therapeutic management of SARS-CoV2 infection.</p>


2020 ◽  
Vol 7 ◽  
Author(s):  
Savariar Vincent ◽  
Selvaraj Arokiyaraj ◽  
Muthupandian Saravanan ◽  
Manoj Dhanraj

The COVID-19 has now been declared a global pandemic by the World Health Organization. No approved drug is currently available; therefore, an urgent need has been developed for any antiviral therapy for COVID-19. Main protease 3CLpro of this novel Coronavirus (SARS-CoV-2) play a critical role in the disease propagation, and hence represent a crucial target for the drug discovery. Herein, we have applied a bioinformatics approach for drug repurposing to identify the possible potent inhibitors of SARS-CoV-2 main proteases 3CLpro (6LU7). In search of the anti-COVID-19 compound, we selected 145 phyto-compounds from Kabasura kudineer (KK), a poly-herbal formulation recommended by AYUSH for COVID-19 which are effective against fever, cough, sore throat, shortness of breath (similar to SARS-CoV2-like symptoms). The present study aims to identify molecules from natural products which may inhibit COVID-19 by acting on the main protease (3CLpro). Obtained results by molecular docking showed that Acetoside (−153.06), Luteolin 7 -rutinoside (−134.6) rutin (−133.06), Chebulagic acid (−124.3), Syrigaresinol (−120.03), Acanthoside (−122.21), Violanthin (−114.9), Andrographidine C (−101.8), myricetin (−99.96), Gingerenone -A (−93.9), Tinosporinone (−83.42), Geraniol (−62.87), Nootkatone (−62.4), Asarianin (−79.94), and Gamma sitosterol (−81.94) are main compounds from KK plants which may inhibit COVID-19 giving the better energy score compared to synthetic drugs. Based on the binding energy score, we suggest that these compounds can be tested against Coronavirus and used to develop effective antiviral drugs.


2020 ◽  
Author(s):  
Sourav Das ◽  
Atanu Singha Roy

<i>Background:</i> The novel coronavirus (COVID-19) has quickly spread throughout the globe, affecting millions of people. The World Health Organization (WHO) has recently declared this infectious disease as a pandemic. At present, several clinical trials are going on to identify possible drugs for treating this infection. SARS-CoV-2 M<sup>pro</sup> is one of the most critical drug targets for the blockage of viral replication. <i>Method:</i> The blind molecular docking analyses of natural anthraquinones with SARS-CoV-2 M<sup>pro</sup> were carried out in an online server, SWISSDOCK, which is based on EADock DSS docking software. <i>Results: </i>Blind molecular docking studies indicated that several<i> </i>natural antiviral anthraquinones could prove to be effective inhibitors for SARS-CoV-2 M<sup>pro</sup> of COVID-19 as they bind near the active site having the catalytic dyad, HIS41 and CYS145 through non-covalent forces. The anthraquinones showed less inhibitory potential as compared to the FDA approved drug, remdesivir.<i></i> <p><b><i>Conclusion:</i></b><i> </i>Among the natural anthraquinones<i>, </i>alterporriol Q could be the most potential inhibitor of SARS-CoV-2 M<sup>pro</sup> among the natural anthraquinones studied here, as its ∆<i>G</i> value differed from that of remdesivir only by 0.51 kcal/ mol. The uses of these alternate compounds might be favorable for the treatment of the COVID-19.</p>


Molekul ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 125
Author(s):  
Taufik Muhammad Fakih

The 2019 coronavirus pandemic disease (COVID-19) is still declared a global pandemic by the World Health Organization (WHO). Therefore, an effort that is considered effective in finding therapeutic agents is needed to prevent the spread of COVID-19 infection. One of the steps that can be chosen is by utilizing antimicrobial peptides (AMPs) from animal venom by targeting the specific receptor of SARS-CoV-2, namely the main protease (Mpro). Through this research, a computational approach will be conducted to predict antiviral activity, including protein-peptide docking using PatchDock algorithm, to identify, evaluate, and explore the affinity and molecular interactions of four types of antimicrobial peptides (AMPs), such as Mucroporin, Mucroporin-M1, Mucroporin-S1, and Mucroporin-S2 derived from scorpion venom (Lychas mucronatus) against main protease (Mpro) SARS-CoV-2. These results were then confirmed using protein-peptide interaction dynamics simulations for 50 ns using Gromacs 2016 to observe the molecular stability to the binding site of SARS-CoV-2 Mpro. Based on protein-peptide docking simulations, it was proven that the Mucroporin S-1 peptides have a good affinity against the active site area of SARS-CoV-2 Mpro, with an ACE score of −779.56 kJ/mol. Interestingly, Mucroporin-S1 was able to maintain the stability of its interactions based on the results of RMSD, RMSF, and MM/PBSA binding free energy calculations. The results of the computational approach predict that the Mucroporin-S1 peptide is expected to be useful for further research in the development of new antiviral-based AMPs for the COVID-19 infectious disease. 


2020 ◽  
Author(s):  
Ernest Awoonor-Williams ◽  
Abd Al-Aziz A. Abu-Saleh

COVID-19, the disease caused by the newly discovered coronavirus — SARS-CoV-2, has created global health, social, and economic crisis. At the time of writing (November 12, 2020), there are over 50 million confirmed cases and more than 1 million reported deaths due to COVID-19. Currently, there are no approved vaccines, and recently Veklury (remdesivir) was approved for the treatment of COVID-19 requiring hospitalization. The main protease (M<sup>pro</sup>) of the virus is an attractive target for the development of effective antiviral therapeutics because it is required for proteolytic cleavage of viral polyproteins. Furthermore, the M<sup>pro</sup> has no human homologues, so drugs designed to bind to this target directly have less risk for off-target reactivity. Recently, several high-resolution crystallographic structures of the M<sup>pro</sup> in complex with inhibitors have been determined — to guide drug development and to spur efforts in structure-based drug design. One of the primary objectives of modern structure-based drug design is the accurate prediction of receptor­-ligand binding affinities for rational drug design and discovery. Here, we perform rigorous alchemical absolute binding free energy calculations and QM/MM calculations to give insight into the total binding energy of two recently crystallized inhibitors of SARS-CoV-2 M<sup>pro</sup>, namely, N3 and α-ketoamide 13b. The total binding energy consists of both covalent and non-covalent binding components since both compounds are covalent inhibitors of the M<sup>pro</sup>. Our results indicate that the covalent and non-covalent binding free energy contributions of both inhibitors to the M<sup>pro</sup> target differ significantly. The N3 inhibitor has more favourable non-covalent interactions, particularly hydrogen bonding, in the binding site of the M<sup>pro</sup> than the α-ketoamide inhibitor. But the Gibbs energy of reaction for the M<sup>pro</sup>–α-ketoamide covalent adduct is greater than the Gibbs reaction energy for the M<sup>pro</sup>–N3 covalent adduct. These differences in the covalent and non-covalent binding free energy contributions for both inhibitors could be a plausible explanation for their in vitro differences in antiviral activity. Our findings highlight the importance of both covalent and non-covalent binding free energy contributions to the absolute binding affinity of a covalent inhibitor towards its target.


2020 ◽  
Author(s):  
Ernest Awoonor-Williams ◽  
Abd Al-Aziz A. Abu-Saleh

COVID-19, the disease caused by the newly discovered coronavirus — SARS-CoV-2, has created global health, social, and economic crisis. At the time of writing (November 12, 2020), there are over 50 million confirmed cases and more than 1 million reported deaths due to COVID-19. Currently, there are no approved vaccines, and recently Veklury (remdesivir) was approved for the treatment of COVID-19 requiring hospitalization. The main protease (M<sup>pro</sup>) of the virus is an attractive target for the development of effective antiviral therapeutics because it is required for proteolytic cleavage of viral polyproteins. Furthermore, the M<sup>pro</sup> has no human homologues, so drugs designed to bind to this target directly have less risk for off-target reactivity. Recently, several high-resolution crystallographic structures of the M<sup>pro</sup> in complex with inhibitors have been determined — to guide drug development and to spur efforts in structure-based drug design. One of the primary objectives of modern structure-based drug design is the accurate prediction of receptor­-ligand binding affinities for rational drug design and discovery. Here, we perform rigorous alchemical absolute binding free energy calculations and QM/MM calculations to give insight into the total binding energy of two recently crystallized inhibitors of SARS-CoV-2 M<sup>pro</sup>, namely, N3 and α-ketoamide 13b. The total binding energy consists of both covalent and non-covalent binding components since both compounds are covalent inhibitors of the M<sup>pro</sup>. Our results indicate that the covalent and non-covalent binding free energy contributions of both inhibitors to the M<sup>pro</sup> target differ significantly. The N3 inhibitor has more favourable non-covalent interactions, particularly hydrogen bonding, in the binding site of the M<sup>pro</sup> than the α-ketoamide inhibitor. But the Gibbs energy of reaction for the M<sup>pro</sup>–α-ketoamide covalent adduct is greater than the Gibbs reaction energy for the M<sup>pro</sup>–N3 covalent adduct. These differences in the covalent and non-covalent binding free energy contributions for both inhibitors could be a plausible explanation for their in vitro differences in antiviral activity. Our findings highlight the importance of both covalent and non-covalent binding free energy contributions to the absolute binding affinity of a covalent inhibitor towards its target.


2021 ◽  
Vol 22 (11) ◽  
pp. 5910
Author(s):  
Chiara Luise ◽  
Dina Robaa ◽  
Pierre Regenass ◽  
David Maurer ◽  
Dmytro Ostrovskyi ◽  
...  

The chromatin reader protein Spindlin1 plays an important role in epigenetic regulation, through which it has been linked to several types of malignant tumors. In the current work, we report on the development of novel analogs of the previously published lead inhibitor A366. In an effort to improve the activity and explore the structure–activity relationship (SAR), a series of 21 derivatives was synthesized, tested in vitro, and investigated by means of molecular modeling tools. Docking studies and molecular dynamics (MD) simulations were performed to analyze and rationalize the structural differences responsible for the Spindlin1 activity. The analysis of MD simulations shed light on the important interactions. Our study highlighted the main structural features that are required for Spindlin1 inhibitory activity, which include a positively charged pyrrolidine moiety embedded into the aromatic cage connected via a propyloxy linker to the 2-aminoindole core. Of the latter, the amidine group anchor the compounds into the pocket through salt bridge interactions with Asp184. Different protocols were tested to identify a fast in silico method that could help to discriminate between active and inactive compounds within the A366 series. Rescoring the docking poses with MM-GBSA calculations was successful in this regard. Because A366 is known to be a G9a inhibitor, the most active developed Spindlin1 inhibitors were also tested over G9a and GLP to verify the selectivity profile of the A366 analogs. This resulted in the discovery of diverse selective compounds, among which 1s and 1t showed Spindlin1 activity in the nanomolar range and selectivity over G9a and GLP. Finally, future design hypotheses were suggested based on our findings.


2020 ◽  
Author(s):  
Micael Davi Lima de Oliveira ◽  
Kelson Mota Teixeira de Oliveira

According to the World Health Organisation, on March 27, 2020, the number of confirmed cases of COVID-19 has already exceeded 509.000 with about of 23.000 deaths worldwide. Given this, the impact of COVID-19 on humanity cannot be overlooked, and basic research are urgently needed. This research aims to find antagonists already approved for another diseases, that may inhibit activity of the main protease <i>(Mpro)</i> of the SARS-CoV-2 virus, as well as modulate the <i>ACE2</i> receptors, largely found in lung cells and reduce viral replication by inhibiting <i>NSP12 RNA Polymerase</i>. Docking molecular simulations were realized among a total of <i>28 ligands</i> published in the literature against COVID-19. Docking studies were made with algorithm of <i>AutoDock Vina 1.1.2</i> software. A structure-based virtual screening was performed with <i>MTiOpenScreen</i>. Subsequently, the physical-chemical and pharmacokinetic parameters were analyzed with <i>SwissADME</i> in order to select only the most promising ones. Finally, simulations of molecular dynamics with elapsed time of <i>4 nanoseconds</i> (ns) were analysed in order to better understand the action of drugs to the detriment of the limitations of molecular docking. This work has shown that, in comparative terms, <i>Simeprevir</i>, <i>Paritaprevir</i>, <i>Remdesivir</i> and <i>Baricitinib</i> are currently among the most promising in remission of symptoms from the disease. <i>Hydroxy-chloroquine</i>, <i>Chloroquine</i> and <i>Azithromicin</i> were not showed effective, as monotherapies, against COVID-19 or <i>lung cell</i> receptors. Nevertheless, it has not been able to reach conclusive results due to the limitations of computational techniques that do not take into account numerous empirical parameters.


2020 ◽  
Author(s):  
Serdar Durdagi ◽  
Busecan Aksoydan ◽  
Berna Dogan ◽  
Kader Sahin ◽  
Aida Shahraki ◽  
...  

In this virtual drug repurposing study, we used 7922 FDA approved drugs and compounds in clinical investigation from NPC database. Both apo and holo forms of SARS-CoV-2 Main Protease as well as Spike Protein/ACE2 were used for virtual screening. Initially, docking was performed for these compounds at target binding sites. The compounds were then sorted according to their docking scores which represent binding energies. The first 100 compounds from each docking simulations were initially subjected to short (10 ns) MD simulations (in total 300 ligand-bound complexes), and average binding energies during MD simulations were calculated using the MM/GBSA method. Then, the selected promising hit compounds based on average MM/GBSA scores were used in long (100-ns and 500-ns) MD simulations. In total around 15 µs MD simulations were performed in this study. Both docking and MD simulations binding free energy calculations showed that holo form of the target protein is more appropriate choice for virtual drug screening studies. These numerical calculations have shown that the following 8 compounds can be considered as SARS-CoV-2 Main Protease inhibitors: Pimelautide, Rotigaptide, Telinavir, Ritonavir, Pinokalant, Terlakiren, Cefotiam and Cefpiramide. In addition, following 5 compounds were identified as potential SARS-CoV-2 ACE-2/Spike protein domain inhibitors: Denopamine, Bometolol, Naminterol, Rotigaptide and Benzquercin. These compounds can be clinically tested and if the simulation results validated, they may be considered to be used as treatment for COVID-19.


2020 ◽  
Author(s):  
Bello Martiniano ◽  
Martínez-Muñoz Alberto ◽  
Balbuena-Rebolledo Irving

Abstract Among targets selected for studies aimed to identify potential inhibitors against COVID-19, SARS-CoV2 main proteinase (Mpro) is highlighted. Mpro is indispensable for virus replication, and is a promising target of potential inhibitors of COVID-19. Recently, monomeric SARS-CoV2 Mpro, drug repurposing and docking methods have facilitated the identification of several potential inhibitors. Results were refined through the assessment of dimeric SARS-CoV2 Mpro, which represents the functional state of enzyme. Docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area (MM/GBSA) studies indicated that dimeric Mpro most significantly impacts binding affinity tendency compared with the monomeric state, which suggesting that dimeric state is most useful when performing studies aimed to identify drugs targeting Mpro. In this study, we extend previous research by performing docking and MD simulation studies coupled with an MM/GBSA approach to assess binding of dimeric SARS-CoV2 Mpro to 12 FDA-approved drugs (darunavir, indinavir, saquinavir, tipranavir, diosmin, hesperidin, rutin, raltegravir, velpatasvir, ledipasvir, rosuvastatin and bortezomib), which were identified as the best candidates for treatment of COVID-19 in some previous dockings studies involving monomeric SARS-CoV2 Mpro. This analysis identified saquinavir as a potent inhibitor of dimeric SARS-CoV2 Mpro, therefore, the compound may have clinical utility against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document