scholarly journals Selective Crystallization via Vibrational Strong Coupling

Author(s):  
Kenji Hirai ◽  
Hiroto Ishikawa ◽  
Thibault Chervy ◽  
JAMES HUTCHISON ◽  
Hiroshi Uji-i

The coupling of (photo)chemical processes to optical cavity vacuum fields is an emerging method for modulating molecular and material properties. Recent reports have shown that strong coupling of the vibrational modes of solvents to cavity vacuum fields can influence the chemical reaction kinetics of dissolved solutes. This suggests that vibrational strong coupling might also effect other important solution-based processes, such as crystallization from solution. Here we test this hither-to unexplored notion, investigating pseudopolymorphism in the crystallization from water of ZIF metal-organic frameworks inside optical microcavities. We find that ZIF-8 crystals are selectively obtained from solution inside optical microcavities, where the OH stretching vibration of water is strongly coupled to cavity vacuum fields, whereas mixtures of ZIF-8 and ZIF-L are obtained otherwise. This work suggests that cavity vacuum fields might become a tool for materials synthesis, biasing molecular self-assembly and driving macroscopic material outcomes.

2020 ◽  
Author(s):  
Kenji Hirai ◽  
Hiroto Ishikawa ◽  
JAMES HUTCHISON ◽  
Hiroshi Uji-i

The coupling of (photo)chemical processes to optical cavity vacuum fields is an emerging method for modulating molecular and material properties. Recent reports have shown that strong coupling of the vibrational modes of solvents to cavity vacuum fields can influence the chemical reaction kinetics of dissolved solutes. This suggests that vibrational strong coupling might also effect other important solution-based processes, such as crystallization from solution. Here we test this hither-to unexplored notion, investigating pseudopolymorphism in the crystallization from water of ZIF metal-organic frameworks inside optical microcavities. We find that ZIF-8 crystals are selectively obtained from solution inside optical microcavities, where the OH stretching vibration of water is strongly coupled to cavity vacuum fields, whereas mixtures of ZIF-8 and ZIF-L are obtained otherwise. This work suggests that cavity vacuum fields might become a tool for materials synthesis, biasing molecular self-assembly and driving macroscopic material outcomes.


2020 ◽  
Author(s):  
Kenji Hirai ◽  
Hiroto Ishikawa ◽  
JAMES HUTCHISON ◽  
Hiroshi Uji-i

The coupling of (photo)chemical processes to optical cavity vacuum fields is an emerging method for modulating molecular and material properties. Recent reports have shown that strong coupling of the vibrational modes of solvents to cavity vacuum fields can influence the chemical reaction kinetics of dissolved solutes. This suggests that vibrational strong coupling might also effect other important solution-based processes, such as crystallization from solution. Here we test this hither-to unexplored notion, investigating pseudopolymorphism in the crystallization from water of ZIF metal-organic frameworks inside optical microcavities. We find that ZIF-8 crystals are selectively obtained from solution inside optical microcavities, where the OH stretching vibration of water is strongly coupled to cavity vacuum fields, whereas mixtures of ZIF-8 and ZIF-L are obtained otherwise. This work suggests that cavity vacuum fields might become a tool for materials synthesis, biasing molecular self-assembly and driving macroscopic material outcomes.


2021 ◽  
Author(s):  
Kenji Hirai ◽  
Hiroto Ishikawa ◽  
Thibault Chervy ◽  
James Andell Hutchison ◽  
Hiroshi Uji-i

The coupling of (photo)chemical processes to optical cavity vacuum fields is an emerging method for modulating molecular and material properties. Recent reports have shown that strong coupling of the vibrational...


2020 ◽  
Vol 75 (8) ◽  
pp. 803-807
Author(s):  
Svend-Age Biehs ◽  
Achim Kittel ◽  
Philippe Ben-Abdallah

AbstractWe theoretically analyze heat exchange between two quantum systems in interaction with external thermostats. We show that in the strong coupling limit the widely used concept of mode temperatures loses its thermodynamic foundation and therefore cannot be employed to make a valid statement on cooling and heating in such systems; instead, the incorrectly applied concept may result in a severe misinterpretation of the underlying physics. We illustrate these general conclusions by discussing recent experimental results reported on the nanoscale heat transfer through quantum fluctuations between two nanomechanical membranes separated by a vacuum gap.


2018 ◽  
Vol 175 ◽  
pp. 03004 ◽  
Author(s):  
David Schaich ◽  
Simon Catterall

We present ongoing investigations of a four-dimensional lattice field theory with four massless reduced staggered fermions coupled through an SU(4)-invariant fourfermion interaction. As in previous studies of four-fermion and Higgs–Yukawa models with different lattice fermion discretizations, we observe a strong-coupling phase in which the system develops a mass gap without breaking any lattice symmetry. This symmetric strong-coupling phase is separated from the symmetric weak-coupling phase by a narrow region of four-fermi coupling in which the system exhibits long-range correlations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mariano E. Brito ◽  
Marcelo A. Carignano ◽  
Verónica I. Marconi

2019 ◽  
Vol 7 (3) ◽  
pp. 965-971 ◽  
Author(s):  
Xiaodi Cheng ◽  
Zhiyan Pan ◽  
Chaojun Lei ◽  
Yangjun Jin ◽  
Bin Yang ◽  
...  

A ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid with strong coupling and synergistic effects was developed for highly active OER at ultra-high current densities.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
David M. Coles ◽  
Yanshen Yang ◽  
Yaya Wang ◽  
Richard T. Grant ◽  
Robert A. Taylor ◽  
...  

2016 ◽  
Vol 25 (10) ◽  
pp. 1630006 ◽  
Author(s):  
Alberto Güijosa

In the nearly 20 years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and does not presuppose knowledge of string theory.


Sign in / Sign up

Export Citation Format

Share Document