scholarly journals Estimating the Geothermal Electricity Generation Potential of Sedimentary Basins Using genGEO (The Generalizable GEOthermal Techno-Economic Simulator)

Author(s):  
Benjamin Adams ◽  
Jonathan Ogland-Hand ◽  
Jeffrey M. Bielicki ◽  
Philipp Schädle ◽  
Martin Saar

<p><b>Abstract</b></p><p>Sedimentary basins are ubiquitous, naturally porous and permeable, and the geothermal heat in these basins can be extracted with geologic water or CO<sub>2</sub> and used to generate electricity. Despite this, the broad potential that these formations may have for electricity generation is unknown. Here we investigate this potential, which required the creation of the <u>gen</u>eralizable <u>GEO</u>thermal techno-economic simulator (genGEO). genGEO is built with only publicly available data and uses five standalone, but integrated, models that directly simulate all components of geothermal power plants to estimate electricity generation and cost. As a result of this structure, genGEO, or a portion of it, can be applied or extended to study any geothermal power technology. In contrast, the current techno-economic tools for geothermal power plants rely on characterizations of unpublished ASPEN results and are thus not generalizable enough to be applied to sedimentary basin geothermal power plants which use subsurface CO<sub>2</sub>.</p> <p>In this study, we present genGEO as open-source software, validate it with industry data, and compare its estimates to other geothermal techno-economic tools. We then apply genGEO to sedimentary basin geothermal resources and find that using CO<sub>2</sub> as a subsurface heat extraction fluid compared to water decreases the cost of geothermal electricity across most geologic conditions that are representative of sedimentary basins. Using genGEO results and p50 geologic data, we produce supply curves for sedimentary basin geothermal power plants in the U.S., which suggests that there is present-day potential to profitably increase the capacity of geothermal power by ~10% using water as the subsurface heat extraction fluid. More capacity is available at lower cost when CO<sub>2</sub> is used as the subsurface fluid, but realizing this capacity requires geologically storing between ~2 and ~7 MtCO<sub>2</sub>/MW<sub>e</sub>. But developing sedimentary basin resources in the short-term using subsurface water may not eliminate options for CO₂-based power plants in the long-term because the least-cost order of sedimentary basins is not the same for both CO<sub>2</sub> and water. With sufficient geologic CO<sub>2</sub> storage, developing sedimentary basins using CO<sub>2</sub>- and water-based power plants may be able to proceed in parallel.</p>

2021 ◽  
Author(s):  
Benjamin Adams ◽  
Jonathan Ogland-Hand ◽  
Jeffrey M. Bielicki ◽  
Philipp Schädle ◽  
Martin Saar

<p><b>Abstract</b></p><p>Sedimentary basins are ubiquitous, naturally porous and permeable, and the geothermal heat in these basins can be extracted with geologic water or CO<sub>2</sub> and used to generate electricity. Despite this, the broad potential that these formations may have for electricity generation is unknown. Here we investigate this potential, which required the creation of the <u>gen</u>eralizable <u>GEO</u>thermal techno-economic simulator (genGEO). genGEO is built with only publicly available data and uses five standalone, but integrated, models that directly simulate all components of geothermal power plants to estimate electricity generation and cost. As a result of this structure, genGEO, or a portion of it, can be applied or extended to study any geothermal power technology. In contrast, the current techno-economic tools for geothermal power plants rely on characterizations of unpublished ASPEN results and are thus not generalizable enough to be applied to sedimentary basin geothermal power plants which use subsurface CO<sub>2</sub>.</p> <p>In this study, we present genGEO as open-source software, validate it with industry data, and compare its estimates to other geothermal techno-economic tools. We then apply genGEO to sedimentary basin geothermal resources and find that using CO<sub>2</sub> as a subsurface heat extraction fluid compared to water decreases the cost of geothermal electricity across most geologic conditions that are representative of sedimentary basins. Using genGEO results and p50 geologic data, we produce supply curves for sedimentary basin geothermal power plants in the U.S., which suggests that there is present-day potential to profitably increase the capacity of geothermal power by ~10% using water as the subsurface heat extraction fluid. More capacity is available at lower cost when CO<sub>2</sub> is used as the subsurface fluid, but realizing this capacity requires geologically storing between ~2 and ~7 MtCO<sub>2</sub>/MW<sub>e</sub>. But developing sedimentary basin resources in the short-term using subsurface water may not eliminate options for CO₂-based power plants in the long-term because the least-cost order of sedimentary basins is not the same for both CO<sub>2</sub> and water. With sufficient geologic CO<sub>2</sub> storage, developing sedimentary basins using CO<sub>2</sub>- and water-based power plants may be able to proceed in parallel.</p>


Author(s):  
Miljan Vlahović ◽  
◽  
Milica Vlahović ◽  
Zoran Stević ◽  
◽  
...  

According to the official definition, approved by the European Geothermal Energy Council (EGEC), geothermal energy is energy accumulated as heat below the surface of solid soil. Geothermal energy is thermal energy generated and stored in the Earth. It is generally defined as the part of geothermal heat that can be directly utilized as heat or converted into other types of energy. Geothermal resources vary by location and depth towards the Earth's core. Their use is possible for different purposes depending on their temperature. This paper presents the harnessing geothermal resources for electricity generation. There are three main types of geothermal power plants: dry steam plants, flash steam plants, and binary cycle plants. Dry steam plants pipe hot steam from underground into turbines, which powers the generator to provide electricity. Flash steam plants pump hot water from underground into a cooler flash tank. The formed steam powers the electricity generator. Binary cycle plants pump hot water from underground through a heat exchanger that heats a second liquid to transform it into steam, which powers the generator. In all mentioned systems the used fluids are recycled. It can be concluded that geothermal power plants work similarly to other power plants, but providing the steam for starting the turbine from the earth's interior. The fact that used fluids return to the ground makes geothermal energy resources renewable.


Author(s):  
Obumneme Oken

Nigeria has some surface phenomena that indicate the presence of viable geothermal energy. None of these locations have been explored extensively to determine the feasibility of sustainable geothermal energy development for electricity generation or direct heating. In this context, the present study aims to provide insight into the energy potential of such development based on the enthalpy estimation of geothermal reservoirs. This particular project was conducted to determine the amount of energy that can be gotten from a geothermal reservoir for electricity generation and direct heating based on the estimated enthalpy of the geothermal fluid. The process route chosen for this project is the single-flash geothermal power plant because of the temperature (180℃) and unique property of the geothermal fluid (a mixture of hot water and steam that exists as a liquid under high pressure). The Ikogosi warm spring in Ekiti State, Nigeria was chosen as the site location for this power plant. To support food security efforts in Africa, this project proposes the cascading of a hot water stream from the flash tank to serve direct heat purposes in agriculture for food preservation, before re-injection to the reservoir. The flowrate of the geothermal fluid to the flash separator was chosen as 3125 tonnes/hr. The power output from a single well using a single flash geothermal plant was evaluated to be 11.3 MW*. This result was obtained by applying basic thermodynamic principles, including material balance, energy balance, and enthalpy calculations. This particular project is a prelude to a robust model that will accurately determine the power capacity of geothermal power plants based on the enthalpy of fluid and different plant designs.


2006 ◽  
Vol 129 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Ahmet Dagdas

One of the most important cycles for electricity generation from geothermal energy is the double-flash cycle. Approximately 25% of the total geothermal based electricity generation all over the world comes from double-flash geothermal power plants. In this paper, performance analysis of a hypothetical double-flash geothermal power plant is performed and variations of fundamental characteristics of the plant are examined. In the performance analysis, initially, optimum flashing pressures are determined, and energy and exergy values of the base points of the plant are calculated. In addition, first and second law efficiencies of the power plant are calculated. Main exergy destruction locations are determined and these losses are illustrated in an exergy flow diagram. For these purposes, it is assumed that a hypothetical double-flash geothermal power plant is constructed in the conditions of western Turkey. The geothermal field where the power plant will be built produces geofluid at a temperature of 210°C and a mass flow rate of 200kg∕s. According to simulation results, it is possible to produce 11,488kWe electrical power output in this field. Optimum first and second flashing pressures are determined to be 530kPa and 95kPa, respectively. Based on the exergy of the geothermal fluid at reservoir, overall first and second law efficiencies of the power plant are also calculated to be 6.88% and 28.55%, respectively.


2020 ◽  
Author(s):  
Paolo Basile ◽  
Roberto Brogi ◽  
Favaro Lorenzo ◽  
Tiziana Mazzoni

&lt;p&gt;&lt;span&gt;&lt;span&gt;Social consensus is a &lt;/span&gt;&lt;span&gt;condition precedent for any intervention having an impact on the territory, such as geothermal power plants. Therefore, private investors studied and proposed innovative solution for the exploitation of the medium enthalpy geothermal resource, with &amp;#8220;zero emissions&amp;#8221; in atmosphere, with the target of minimizing its environmental impact. &amp;#8220;Montenero&amp;#8221; project, developed by GESTO Italia, complies with this precondition.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The area covered b&lt;/span&gt;&lt;span&gt;y the exploration and exploitation permit is located on the northern edge of the great geothermal anomaly of Mt. Amiata (Tuscany), about 10 km north of the geothermal field of Bagnore, included in the homonymous Concession of Enel Green Power.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The geological - structural setting of the area around the inactive volc&lt;/span&gt;&lt;span&gt;ano of Mt. Amiata has been characterized by researches for the geothermal field of Bagnore, carried out by Enel Green Power over the years. The geothermal reservoir is present in the limestone and evaporitic rocks of the &amp;#8220;Falda Toscana&amp;#8221;, below which stands the Metamorphic Basement, as testified by the wells of geothermal field of Bagnore. The foreseen reservoir temperature at the target depth of 1.800 m is 140 &amp;#176;C, with an incondensable gas content of 1,8% by weight.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The project was presented to the authorities in 2013 and it is &lt;/span&gt;&lt;span&gt;now undergoing exploitation authorization and features the construction of a 5 MW ORC (Organic Ranking Circle) binary power plant. The plant is fed by three production wells for a total mass flow rate of 700 t/h. The geothermal fluid is pumped by three ESPs (Electrical Submersible Pump) keeping the geothermal fluid in liquid state from the extraction through the heat exchangers to its final reinjection three wells.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The reinjection temperature is 70 &amp;#176;C and the circuit pressure is maintained above the &lt;/span&gt;&lt;span&gt;incondensable gas bubble pressure, i.e. 40 bar, condition which prevents also the formation of calcium carbonate scaling. The confinement of the geothermal fluid in a &amp;#8220;closed loop system&amp;#8221; is an important advantage from the environmental point of view: possible pollutants presented inside the geothermal fluid are not released into the environment and are directly reinjected in geothermal reservoir.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;The &lt;/span&gt;&lt;span&gt;environmental authorization procedure (obtained) has taken into account all the environmental aspects concerning the natural matrices (air, water, ground, ...) potentially affected by the activities needed for the development, construction and operation of &amp;#8220;Montenero&amp;#8221; ORC geothermal power plant. A numerical modeling was designed and applied in order to estimate the effect of the cultivation activity and to assess the reinjection overpressure (seismic effect evaluation). The project also follows the &amp;#8220;best practices&amp;#8221; implemented in Italy by the &amp;#8220;Guidelines for the usage of medium and high enthalpy geothermal resources&amp;#8221; prepared in cooperation between the Ministry of Economic Development and the Ministry of the Environment.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;


2019 ◽  
Vol 2 (3) ◽  
pp. 525-531
Author(s):  
Mahmut Hekim ◽  
Engin Cetin

Geothermal power plants are the plants that provide the conversion of thermal energy in geothermal fluid to electrical energy as a result of the extraction of underground hot water resources to the earth by drilling. The total installed power of geothermal power plants in the field of geothermal resources in Turkey has reached 1,336 MW. The geothermal fluid, which is used for electric power generation in geothermal power plants, is re-injected into the underground wells after electrical energy production. For efficient generation of electrical energy in geothermal power plants, it is aimed to reuse the waste heat energy within the geothermal fluid before it is sent to the re-injection well. To achieve this aim, thermoelectric generator modules which convert waste heat energy to electrical energy can be used. In this study, a thermoelectric generator-based geothermal power plant simulator that converts geothermal fluid waste heat into electrical energy is installed and commissioned in the laboratory conditions.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3187 ◽  
Author(s):  
Marta Ros Karlsdottir ◽  
Jukka Heinonen ◽  
Halldor Palsson ◽  
Olafur Petur Palsson

The European Union (EU) has made climate change mitigation a high priority though a policy framework called “Clean Energy for all Europeans “. The concept of primary energy for energy resources plays a critical role in how different energy technologies appear in the context of this policy. This study shows how the calculation methodologies of primary energy content and primary energy factors pose a possible negative implication on the future development of geothermal energy when comparing against EU’s key energy policy targets for 2030. Following the current definitions of primary energy, geothermal utilization becomes the most inefficient resource in terms of primary energy use, thus contradicting key targets of increased energy efficiency in buildings and in the overall energy use of member states. We use a case study of Hellisheidi, an existing geothermal power plant in Iceland, to demonstrate how the standard primary energy factor for geothermal in EU energy policy is highly overestimated for efficient geothermal power plants. Moreover, we combine life cycle assessment and the commonly utilized combined heat and power production allocation methods to extract the non-renewable primary energy factor for geothermal and show how it is only a minimal fraction of the total primary energy factor for geothermal. The findings of the study apply to other geothermal plants within the coverage of the European Union’s energy policy, whether from high- or low-temperature geothermal resources. Geothermal has substantial potential to aid in achieving the key energy and climate targets. Still, with the current definition of the primary energy of geothermal resources, it may not reach the potential.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1335 ◽  
Author(s):  
Michał Kaczmarczyk ◽  
Barbara Tomaszewska ◽  
Leszek Pająk

The article presents an assessment of the potential for using low enthalpy geothermal resources for electricity generation on the basis of the Małopolskie Voivodeship (southern Poland). Identification the locations providing the best prospects with the highest efficiency and possible gross power output. Thermodynamic calculations of power plants were based on data from several geothermal wells: the Bańska PGP-1, Bańska IG-1, Bańska PGP-3 and Chochołów PIG-1 which are working wells located in one of the best geothermal reservoirs in Poland. As the temperature of geothermal waters from the wells does not exceed 86 °C, considerations include the use of binary technologies—the Organic Rankine Cycle (ORC) and Kalina Cycle. The potential gross capacity calculated for existing geothermal wells will not exceed 900 kW for ORC and 1.6 MW for Kalina Cycle. In the case of gross electricity, the total production will not exceed 3.3 GWh/year using the ORC, and will not exceed 6.3 GWh/year for the Kalina Cycle.


2015 ◽  
Vol 8 (1) ◽  
pp. 73-76
Author(s):  
Yujiang He ◽  
Guiling Wang ◽  
Wenjing Lin ◽  
Wei Zhang

The geothermal resources in sedimentary basin are affected by many factors because the characteristic of geothermal reservoirs is very complex, so the heat storage capacities are hard to calculate. This paper took Dunhuang Basin as an example to analyze the geological structure, stratigraphic structure and the formation mechanism of geothermal water based on the formation characteristics of the geothermal resources. The analysis results showed the geothermal reservoir parameters, including the area, thickness, and temperature of the geothermal reservoir, and porosity, etc. Based on geothermal reservoir model, the conclusion was that the geothermal resource of Dunhuang Basin was 7.75E+16kJ. The results provided an advice for the exploitation of geothermal resources in sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document