scholarly journals Electrochemically Driven Stereoselective Approach to syn-1,2-Diol Derivatives from Vinylarenes and DMF

Author(s):  
Da Sol Chung ◽  
Steve H Park ◽  
Sang-gi Lee ◽  
Hyunwoo Kim

<div>We have developed an electrochemically driven strategy for the stereoselective synthesis of protected syn-1,2-diols from vinylarenes with N,N-dimethylformamide (DMF). The newly developed system obviates the need for transition metal catalysts or external oxidizing agents, thus providing an operationally simple and efficient route to an array of protected syn-1,2-diols in a single step. This reaction proceeds via an electrooxidation of olefin, followed by a nucleophilic attack of DMF. Subsequent oxidation and nucleophilic capture of the generated carbocation with a trifluoroacetate ion is proposed, which gives rise predominantly to a syn-diastereoselectivity upon the second nucleophilic attack of DMF.</div>

2021 ◽  
Author(s):  
Da Sol Chung ◽  
Steve H Park ◽  
Sang-gi Lee ◽  
Hyunwoo Kim

<div>We have developed an electrochemically driven strategy for the stereoselective synthesis of protected syn-1,2-diols from vinylarenes with N,N-dimethylformamide (DMF). The newly developed system obviates the need for transition metal catalysts or external oxidizing agents, thus providing an operationally simple and efficient route to an array of protected syn-1,2-diols in a single step. This reaction proceeds via an electrooxidation of olefin, followed by a nucleophilic attack of DMF. Subsequent oxidation and nucleophilic capture of the generated carbocation with a trifluoroacetate ion is proposed, which gives rise predominantly to a syn-diastereoselectivity upon the second nucleophilic attack of DMF.</div>


2019 ◽  
Vol 16 (4) ◽  
pp. 460-484 ◽  
Author(s):  
Rebecca Boutin ◽  
Samuel Koh ◽  
William Tam

Background: Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate capable of undergoing multiple types of transformations due to three key structural features: a free alkene, a bridged oxygen atom, and a highly strained ring system. Most notably, ring-opening reactions of OBD using transition metal catalysts and nucleophiles produce multiple stereocenters in a single step. The resulting dihydronaphthalene framework is found in many natural products, which have been shown to be biologically active. Objective: This review will provide an overview of transition metal-catalyzed reactions from the past couple of years including cobalt, copper, iridium, nickel, palladium and rhodium- catalyzed reactions. In addition, the recent derivatization of OBD to cyclopropanated oxabenzonorbornadiene and its reactivity will be discussed. Conclusion: It can be seen from the review, that the work done on this topic has employed the use of many different transition metal catalysts, with many different nucleophiles, to perform various transformations on the OBD molecule. Additionally, depending on the catalyst and ligand used, the stereo and regioselectivity of the product can be controlled, with proposed mechanisms to support the understanding of such reactions. The use of palladium has also generated a cyclopropanated OBD, with reactivity similar to that of OBD. An additional reactive site exists at the distal cyclopropane carbon, giving rise to three types of ring-opened products.


2021 ◽  
Author(s):  
Hao Ni ◽  
xiaoqian he ◽  
Kongbao Zhong ◽  
Haohua Chen ◽  
Wei Lai ◽  
...  

Enynones are powerful synthons for constructing furan derivatives in the presence of transition metal catalysts. Unlike the conventional intramolecular nucleophilic attack with the activation of coinage metals, we propose that...


2022 ◽  
Author(s):  
Saumya Verma ◽  
Asha Joshi ◽  
Saroj Ranjan De ◽  
Jawahar Lal Jat

Epoxidation of alkenes is one of the most explored reactions in organic synthesis because of the accessibilities of diverse important compounds from epoxides. Several transition-metal-catalysts in combination with oxidizing agents...


2021 ◽  
Author(s):  
Da Sol Chung ◽  
Steve H Park ◽  
Sang-gi Lee ◽  
Hyunwoo Kim

We have developed an electrochemically driven strategy for the stereoselective synthesis of protected syn-1,2-diols from vinylarenes with N,N-dimethylformamide (DMF). The newly developed system obviates the need for transition metal catalysts...


Synlett ◽  
2021 ◽  
Author(s):  
Pingfan Li

AbstractThis Account discusses several new reaction methods developed in our group that utilize sulfur-mediated reactions through sulfonium salts and ylides, highlighting the interplay of rational design and serendipity. Our initial goal was to convert aliphatic C–H bonds into C–C bonds site-selectively, and without the use of transition-metal catalysts. While a proof-of-concept has been achieved, this target is far from being ideally realized. The unexpected discovery of an anti-Markovnikov rearrangement and subsequent studies on difunctionalization of alkynes were much more straightforward, and eventually led to the new possibility of asymmetric N–H insertion of sulfonium ylides through Brønsted acid catalysis.1 Introduction2 Allylic/Propargylic C–H Functionalization3 Anti-Markovnikov Rearrangement4 Difunctionalization of Alkynes5 Asymmetric N–H Insertion of Sulfonium Ylides6 Conclusion


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


Sign in / Sign up

Export Citation Format

Share Document