scholarly journals Identifying the Spectroelectrochemical Characteristics of Hematite Photoanodes for Water Oxidation

Author(s):  
Jifang Zhang ◽  
Qiyuan Lin ◽  
Zhenlei Wang ◽  
Haowen Liu ◽  
Yuegang Zhang

Achieving efficient solar water splitting using hematite (α-Fe2O3), one of the most promising candidates for photoanodes, requires photogenerated holes to be efficiently used for water oxidation. However, this goal is obstructed by multiple undesirable recombination processes, as well as insufficient fundamental mechanistic understandings of water oxidation kinetics, particularly as to the nature of reaction pathways and possible reaction intermediates. Here we spectroelectro-chemically identify some of the most critical interfacial processes which determine the photoelectrocatalytic efficiencies of water oxidation, for hematite films with varied surface properties by tailoring the doping level of titanium. The spectroscopic signals of the processes inactive for water oxidation, including oxidation of intra-gap Fe2+ states and Fermi level pinning, are successfully distinguished from that of the active reaction intermediate, Fe(IV)=O. In addition, our kinetic analyses reveal two water oxidation pathways, of which the direct hole transfer mechanism becomes dominant over the surface states-mediated mechanism when the hematite surface is reconstructed by high levels of titanium dopants.

2021 ◽  
Author(s):  
Jifang Zhang ◽  
Qiyuan Lin ◽  
Zhenlei Wang ◽  
Haowen Liu ◽  
Yuegang Zhang

Achieving efficient solar water splitting using hematite (α-Fe2O3), one of the most promising candidates for photoanodes, requires photogenerated holes to be efficiently used for water oxidation. However, this goal is obstructed by multiple undesirable recombination processes, as well as insufficient fundamental mechanistic understandings of water oxidation kinetics, particularly as to the nature of reaction pathways and possible reaction intermediates. Here we spectroelectro-chemically identify some of the most critical interfacial processes which determine the photoelectrocatalytic efficiencies of water oxidation, for hematite films with varied surface properties by tailoring the doping level of titanium. The spectroscopic signals of the processes inactive for water oxidation, including oxidation of intra-gap Fe2+ states and Fermi level pinning, are successfully distinguished from that of the active reaction intermediate, Fe(IV)=O. In addition, our kinetic analyses reveal two water oxidation pathways, of which the direct hole transfer mechanism becomes dominant over the surface states-mediated mechanism when the hematite surface is reconstructed by high levels of titanium dopants.


Author(s):  
Bingjun Jin ◽  
Yoonjun Cho ◽  
Cheolwoo Park ◽  
Jeehun Jeong ◽  
Sungsoon Kim ◽  
...  

The photoelectrochemical (PEC) water splitting efficiency is profoundly restricted by the limited light harvesting, rapid charge recombination, and sluggish water oxidation kinetics, in which the construction of a photoelectrode requires...


2021 ◽  
Vol MA2021-01 (39) ◽  
pp. 1251-1251
Author(s):  
Gerko Oskam ◽  
Ingrid Rodriguez Gutierrez ◽  
Manuel Rodríguez Pérez ◽  
Alberto Vega Poot ◽  
Geonel Rodriguez Gattorno ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1526 ◽  
Author(s):  
Sangmo Kim ◽  
Nguyen Nguyen ◽  
Chung Bark

Over the past few decades, solar water splitting has evolved into one of the most promising techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for hydrogen production, many research groups have encountered significant challenges in the quest to achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted much attention as promising candidate materials for water splitting. These materials are among the best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are changeable by atom substitute doping or the fabrication of a new complex structure. In this review, we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will examine the challenges associated with this technology whereby ferroelectric materials are exploited to achieve a high solar-to-hydrogen conversion efficiency.


2019 ◽  
Author(s):  
Drialys Cardenas-Morcoso ◽  
Tsvetelina Merdzhanova ◽  
Vladimir Smirnov ◽  
Friedhelm Finger ◽  
Bernhard Kaiser ◽  
...  

2019 ◽  
Vol 9 (17) ◽  
pp. 4588-4597 ◽  
Author(s):  
Truong-Giang Vo ◽  
Hsin-Man Liu ◽  
Chia-Ying Chiang

In this work, the effect of photochemically modifying nanoporous bismuth vanadate in Co2+ solution in acetate buffer (abbreviated as Co–Ac) on water oxidation was thoroughly studied.


2017 ◽  
Vol 5 (35) ◽  
pp. 18870-18877 ◽  
Author(s):  
Junyan Cui ◽  
Taifeng Liu ◽  
Yu Qi ◽  
Dan Zhao ◽  
Mingjun Jia ◽  
...  

A new nitrogen-doped metal oxide photocatalyst Ba(Mg1/3Ta2/3)O3−xNy (BMTON) with an absorption edge of ca. 560 nm was synthesized, showing obvious H2 or O2-evolution half reaction activities under visible light irradiation for promising solar water splitting.


2020 ◽  
Vol 117 (24) ◽  
pp. 13256-13260 ◽  
Author(s):  
Degao Wang ◽  
Jun Hu ◽  
Benjamin D. Sherman ◽  
Matthew V. Sheridan ◽  
Liang Yan ◽  
...  

Artificial photosynthesis provides a way to store solar energy in chemical bonds. Achieving water splitting without an applied external potential bias provides the key to artificial photosynthetic devices. We describe here a tandem photoelectrochemical cell design that combines a dye-sensitized photoelectrosynthesis cell (DSPEC) and an organic solar cell (OSC) in a photoanode for water oxidation. When combined with a Pt electrode for H2evolution, the electrode becomes part of a combined electrochemical cell for water splitting, 2H2O → O2+ 2H2, by increasing the voltage of the photoanode sufficiently to drive bias-free reduction of H+to H2. The combined electrode gave a 1.5% solar conversion efficiency for water splitting with no external applied bias, providing a mimic for the tandem cell configuration of PSII in natural photosynthesis. The electrode provided sustained water splitting in the molecular photoelectrode with sustained photocurrent densities of 1.24 mA/cm2for 1 h under 1-sun illumination with no applied bias.


Sign in / Sign up

Export Citation Format

Share Document