scholarly journals Multi-Scale Modeling of Aqueous-Phase Methane Diffusion in Silicate Channels

Author(s):  
Tom Pace ◽  
Hadi Rahmaninejad ◽  
Bin Sun ◽  
Peter Kekenes-Huskey

Silica-based materials including zeolites are commonly used for wide ranging applications including separations and catalysis.<br>Substrate transport rates in these materials often significantly influence the efficiency of such applications.<br>Two factors that contribute to transport rates include<br>1) the porosity of the silicate matrix and<br>2) non-bonding interactions between the diffusing species and the silicate surface.<br>Here, we utilize computer simulation to resolve the relative contribution of these factors to effective methane transport rates in a silicate channel.<br>Specifically, we develop a `homogenized' model of methane transport valid at micron and longer length scales that incorporates atomistic-scale kinetic information.<br>The atomistic-scale data are obtained from extensive molecular dynamics simulations that yield local diffusion coefficients and potentials of mean force.<br>With this model, we demonstrate how nuances in silicate hydration and silica/methane interactions impact 'macroscale' methane diffusion rates in bulk silicate materials.<br>This hybrid homogenization/molecular dynamics approach will be of general use for describing small molecule transport in materials with detailed molecular interactions.<br><br>

2021 ◽  
Author(s):  
Tom Pace ◽  
Hadi Rahmaninejad ◽  
Bin Sun ◽  
Peter Kekenes-Huskey

Silica-based materials including zeolites are commonly used for wide ranging applications including separations and catalysis.<br>Substrate transport rates in these materials often significantly influence the efficiency of such applications.<br>Two factors that contribute to transport rates include<br>1) the porosity of the silicate matrix and<br>2) non-bonding interactions between the diffusing species and the silicate surface.<br>Here, we utilize computer simulation to resolve the relative contribution of these factors to effective methane transport rates in a silicate channel.<br>Specifically, we develop a `homogenized' model of methane transport valid at micron and longer length scales that incorporates atomistic-scale kinetic information.<br>The atomistic-scale data are obtained from extensive molecular dynamics simulations that yield local diffusion coefficients and potentials of mean force.<br>With this model, we demonstrate how nuances in silicate hydration and silica/methane interactions impact 'macroscale' methane diffusion rates in bulk silicate materials.<br>This hybrid homogenization/molecular dynamics approach will be of general use for describing small molecule transport in materials with detailed molecular interactions.<br><br>


2019 ◽  
Author(s):  
Alexander J. Bryer ◽  
Jodi A. Hadden ◽  
John E. Stone ◽  
Juan R. Perilla

AbstractCompartmentalization is a central theme in biology. Cells are composed of numerous membrane-enclosed structures, evolved to facilitate specific biochemical processes; viruses act as containers of genetic material, optimized to drive infection. Molecular dynamics simulations provide a mechanism to study biomolecular containers and the influence they exert on their environments; however, trajectory analysis software generally lacks knowledge of container interior versus exterior. Further, many relevant container analyses involve large-scale particle tracking endeavors, which may become computationally prohibitive with increasing system size. Here, a novel method based on 3-D ray casting is presented, which rapidly classifies the space surrounding biomolecular containers of arbitrary shape, enabling fast determination of the identities and counts of particles (e.g., solvent molecules) found inside and outside. The method is broadly applicable to the study of containers and enables high-performance characterization of properties such as solvent density, small-molecule transport, transbilayer lipid diffusion, and topology of protein cavities. The method is implemented in VMD, a widely used simulation analysis tool that supports personal computers, clouds, and parallel supercomputers, including ORNL’s Summit and Titan and NCSA’s Blue Waters, where the method can be employed to efficiently analyze trajectories encompassing millions of particles. The ability to rapidly characterize the spatial relationships of particles relative to a biomolecular container over many trajectory frames, irrespective of large particle counts, enables analysis of containers on a scale that was previously unfeasible, at a level of accuracy that was previously unattainable.Author summaryThe cell is the basic unit of life. Within the container of the cell, the many chemical reactions and biological processes essential to life are carried out simultaneously. Human and other eukaryotic cells include a variety of sub-containers, namely organelles, that provide separation between reactions and processes, and engender the chemical environments conducive to them. In order to understand how the cell works, researchers must study the functions of these containers. Molecular dynamics simulations can reveal important information about how biomolecular containers behave and control their enclosed environments, but the latter can be particularly challenging and expensive to measure. The challenge arises because simulation analysis software lacks awareness of the concepts of container “inside” and “outside.” The expense arises because tracking the many solvent molecules that make up a container’s environment requires significant computing power. We have developed a method that allows the simulation analysis software VMD to automatically detect the interior versus exterior of a container and quickly identify the solvent molecules found in each location. This versatile new feature enables researchers to characterize essential container properties using a relatively inexpensive calculation. Further, the method performs efficiently on supercomputers, allowing researchers to study massive container systems that include millions of particles.


Author(s):  
Rudranarayan M. Mukherjee ◽  
Kurt S. Anderson

This is the first paper in a series of two papers on using multibody dynamics algorithms and methods for coarse-grained molecular dynamics simulations. This paper presents the underlying framework for multi-scale modelling of biomolecules and polymers. In this framework, the system to be simulated is sub-structured into a hierarchy of multi-resolution models that are simulated using efficient multibody dynamics algorithms. The algorithms work in a unified framework, enabling efficient multi-scale (or multi-resolution) simulations. A discussion of the hierarchy of models with different resolutions along with the salient features of the appropriate multibody dynamics algorithms used for simulating them is presented. The unified scheme and the qualitative advantages of the method are discussed. Important implementation details such as boundary conditions, temporal integration schemes, interaction force field calculations and solvent models are also presented. In the next paper applications and results are discussed.


RSC Advances ◽  
2014 ◽  
Vol 4 (97) ◽  
pp. 54447-54453 ◽  
Author(s):  
Md Bin Yeamin ◽  
N. Faginas-Lago ◽  
M. Albertí ◽  
I. G. Cuesta ◽  
J. Sánchez-Marín ◽  
...  

Multiscale modeling and simulation (MMS) combining B97-D/TZV2P DFT calculations and molecular dynamics simulations are performed to investigate the adsorption of hydrogen over coronene as a model of graphene.


Author(s):  
George G. Adams

As the size of the contact region between two bodies decreases to the micro- and nano-scale, the effect of adhesion becomes increasingly important. As introductory remarks to a panel discussion on this topic, we briefly review recent research in the mechanics of adhesion and discuss future research needs. Attention is focused on adhesion with plastic deformation, molecular dynamics simulations, and multi-scale effects.


2015 ◽  
Vol 108 (2) ◽  
pp. 558a-559a
Author(s):  
Antreas C. Kalli ◽  
Andre Cohnen ◽  
Oreste Acuto ◽  
Mark S.P. Sansom

2017 ◽  
Author(s):  
Ronald D Hills, Jr

Coarse-grained simulations enable the study of membrane proteins in the context of their native environment but require reliable parameters. The CgProt force field is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. The reassignment of polar sidechain sites was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlate with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These data points can be used to further discriminate between alternate force field parameters. Available partitioning data was also used to reparameterize the representation of the polar peptide backbone for non-alanine residues. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in molecular dynamics simulations of a variety of membrane protein systems.


Sign in / Sign up

Export Citation Format

Share Document