scholarly journals [(VIVO)2MII5] (M = Ni, Co) Anderson Wheels

Author(s):  
Hector Fraser ◽  
Emily Payne ◽  
Arup Sarkar ◽  
Lucinda Wilson ◽  
Dmitri Mitcov ◽  
...  

Heterometallic Anderson wheels of formula [(VIVO)2MII5(hmp)10Cl2](ClO4)2·2MeOH (M = Ni, 1; Co, 2) have been synthesised from the solvothermal reaction of M(ClO4)2·6H2O and VCl3 with hmpH (2-(hydroxymethyl)pyridine). The metallic skeleton describes a centred hexagon, with the two vanadyl ions sitting on opposing sides of the outer ring. Magnetic susceptibility and magnetisation measurements indicate the presence of both ferromagnetic and antiferromagnetic exchange interactions. Theoretical calculations based on density functional methods reproduce both the sign and strength of the exchange interactions found experimentally, and rationalise the parameters extracted.

2021 ◽  
Author(s):  
Hector Fraser ◽  
Emily Payne ◽  
Arup Sarkar ◽  
Lucinda Wilson ◽  
Dmitri Mitcov ◽  
...  

Heterometallic Anderson wheels of formula [(VIVO)2MII5(hmp)10Cl2](ClO4)2·2MeOH (M = Ni, 1; Co, 2) have been synthesised from the solvothermal reaction of M(ClO4)2·6H2O and VCl3 with hmpH (2-(hydroxymethyl)pyridine). The metallic skeleton describes a centred hexagon, with the two vanadyl ions sitting on opposing sides of the outer ring. Magnetic susceptibility and magnetisation measurements indicate the presence of both ferromagnetic and antiferromagnetic exchange interactions. Theoretical calculations based on density functional methods reproduce both the sign and strength of the exchange interactions found experimentally, and rationalise the parameters extracted.


1993 ◽  
Vol 334 ◽  
Author(s):  
Carlos Sosa

AbstractThe deposition of Aluminum on Si(100) surface has been investigated using density functional methods. This has been accomplished by adoption of a Si9H16 cluster to model the H terminated Si(100) 1XI surface and Si9H15 cluster to model the surface with an unpaired electron. The predicted NLSD dissociation energy for the Si9H16 → Si9H15 + H is 86.3 ± 2.0 Kcal/Mol. This is in agreement with previous theoretical calculations on similar systems.


2015 ◽  
Vol 93 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Rupinder preet Kaur ◽  
Damanjit Kaur ◽  
Ritika Sharma

The present investigation deals with the study of the N–H bond dissociation enthalpies (BDEs) of the Y-substituted (NH2-C(=X)Y-R) and N-substituted ((R)(H)NC(=X)YH) carbamates (X, Y = O, S, Se; R = H, CH3, F, Cl, NH2), which have been evaluated using ab initio and density functional methods. The variations in N−H BDEs of these Y-substituted and N-substituted carbamates as the effect of substituent have been understood in terms of molecule stabilization energy (ME) and radical stabilization energy (RE), which have been calculated using the isodesmic reactions. The natural bond orbital analysis indicated that the electrodelocalization of the lone pairs of heteroatoms in the molecules and radicals affect the ME and RE values depending upon the type and site of substitution (whether N- or Y-). The variations in N−H BDEs depend upon the combined effect of molecule stabilization and radical stabilization by the various substituents.


2004 ◽  
Vol 03 (01) ◽  
pp. 117-144 ◽  
Author(s):  
AKIRA YOSHIMORI

This article reviews microscopic development of time dependent functional method and its application to chemical physics. It begins with the formulation of density functional theory. The time dependent extension is discussed after the equilibrium formulation. Its application is explained by solvation dynamics. In addition, it reviews studies of nonlinear effects on polar liquids and simple mixtures.


Sign in / Sign up

Export Citation Format

Share Document