scholarly journals Realizing Two-Dimensional Spin Arrays on Surfaces via Halogen-Bonding Molecular Self-Assembly

Author(s):  
Dingguan Wang ◽  
Zishen Wang ◽  
Shaofei Wu ◽  
Arramel Arramel ◽  
Xinmao Yin ◽  
...  

Well-ordered spin arrays are highly desirable for next-generation molecule-based magnetic devices, and yet its synthetic method remains a challenging task. Herein, we demonstrate the realization of two-dimensional supramolecular spin arrays on surfaces via halogen-bonding molecular self-assembly. A bromine-terminal perchlorotriphenymethyl radical with net carbon spin was synthesized and deposited on Au(111) to achieve two-dimensional supramolecular spin arrays. By taking advantage of the diversity of halogen bonds, five supramolecular spin arrays are presented with ultrahigh spin densities (up to the value of 3 × 10<sup>13</sup> spins at the size of a flash drive), as probed by low-temperature scanning tunneling microscopy at the single-molecule level. First principle calculations verify that the formation of three distinct types of halogen bonds can be used to tailor supramolecular phases via molecular coverage and annealing temperature. Our work demonstrates supramolecular self-assembly as a promising method to engineering 2D spin arrays for potential application in magnetic devices.

2021 ◽  
Author(s):  
Dingguan Wang ◽  
Zishen Wang ◽  
Shaofei Wu ◽  
Arramel Arramel ◽  
Xinmao Yin ◽  
...  

Well-ordered spin arrays are highly desirable for next-generation molecule-based magnetic devices, and yet its synthetic method remains a challenging task. Herein, we demonstrate the realization of two-dimensional supramolecular spin arrays on surfaces via halogen-bonding molecular self-assembly. A bromine-terminal perchlorotriphenymethyl radical with net carbon spin was synthesized and deposited on Au(111) to achieve two-dimensional supramolecular spin arrays. By taking advantage of the diversity of halogen bonds, five supramolecular spin arrays are presented with ultrahigh spin densities (up to the value of 3 × 10<sup>13</sup> spins at the size of a flash drive), as probed by low-temperature scanning tunneling microscopy at the single-molecule level. First principle calculations verify that the formation of three distinct types of halogen bonds can be used to tailor supramolecular phases via molecular coverage and annealing temperature. Our work demonstrates supramolecular self-assembly as a promising method to engineering 2D spin arrays for potential application in magnetic devices.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1057
Author(s):  
Yi Wang ◽  
Xinrui Miao ◽  
Wenli Deng

Halogen bonds are currently new noncovalent interactions due to their moderate strength and high directionality, which are widely investigated in crystal engineering. The study about supramolecular two-dimensional architectures on solid surfaces fabricated by halogen bonding has been performed recently. Scanning tunneling microscopy (STM) has the advantages of realizing in situ, real-time, and atomic-level characterization. Our group has carried out molecular self-assembly induced by halogen bonds at the liquid–solid interface for about ten years. In this review, we mainly describe the concept and history of halogen bonding and the progress in the self-assembly of halogen-based organic molecules at the liquid/graphite interface in our laboratory. Our focus is mainly on (1) the effect of position, number, and type of halogen substituent on the formation of nanostructures; (2) the competition and cooperation of the halogen bond and the hydrogen bond; (3) solution concentration and solvent effects on the molecular assembly; and (4) a deep understanding of the self-assembled mechanism by density functional theory (DFT) calculations.


2021 ◽  
Vol 22 (13) ◽  
pp. 6880
Author(s):  
Zilong Wang ◽  
Minlong Tao ◽  
Daxiao Yang ◽  
Zuo Li ◽  
Mingxia Shi ◽  
...  

We report an ultra-high vacuum low-temperature scanning tunneling microscopy (STM) study of the C60 monolayer grown on Cd(0001). Individual C60 molecules adsorbed on Cd(0001) may exhibit a bright or dim contrast in STM images. When deposited at low temperatures close to 100 K, C60 thin films present a curved structure to release strain due to dominant molecule–substrate interactions. Moreover, edge dislocation appears when two different wavy structures encounter each other, which has seldomly been observed in molecular self-assembly. When growth temperature rose, we found two forms of symmetric kagome lattice superstructures, 2 × 2 and 4 × 4, at room temperature (RT) and 310 K, respectively. The results provide new insight into the growth behavior of C60 films.


2019 ◽  
Vol 30 (12) ◽  
pp. 2355-2358 ◽  
Author(s):  
Qiang Xue ◽  
Yajie Zhang ◽  
Ruoning Li ◽  
Chao Li ◽  
Na Li ◽  
...  

2015 ◽  
Vol 17 (39) ◽  
pp. 26220-26224 ◽  
Author(s):  
Kai Sun ◽  
Meng Lan ◽  
Jun-Zhong Wang

We investigated the chiral self-assembly of rubrene molecules on a semi-metallic Bi(111) surface using low-temperature scanning tunneling microscopy.


2000 ◽  
Vol 07 (05n06) ◽  
pp. 589-593 ◽  
Author(s):  
S. KODAMBAKA ◽  
V. PETROVA ◽  
A. VAILIONIS ◽  
P. DESJARDINS ◽  
D. G. CAHILL ◽  
...  

In-situ high-temperature scanning tunneling microscopy was used to follow the coarsening (Ostwald ripening) and decay kinetics of single and multiple two-dimensional TiN islands on atomically flat TiN (001) terraces and in single-atom deep vacancy pits at temperatures of 750–950°C. The rate-limiting mechanism for island decay was found to be surface diffusion rather than adatom attachment/detachment at island edges. We have modeled island-decay kinetics based upon the Gibbs–Thomson and steady state diffusion equations to obtain a step-edge energy per unit length of 0.23±0.05 eV/Å and an activation energy for adatom formation and diffusion of 3.4±0.3 eV.


Sign in / Sign up

Export Citation Format

Share Document