scholarly journals Polymorphism of Bulk Boron Nitride

Author(s):  
Tim Gould ◽  
Claudio Cazorla

Boron nitride (BN) is a material with outstanding technological promise because of its exceptional thermochemical stability, structural, electronic and thermal conductivity properties, and extreme hardness. Yet, the relative thermodynamic stability of its most common polymorphs (diamond-like cubic and graphite-like hexagonal) has not been resolved satisfactorily because of the crucial role played by kinetic factors in the formation of BN phases at high temperatures and pressures (experiments), and by competing bonding, electrostatic and many-body dispersion forces in BN cohesion (theory). This lack of understanding hampers the development of potential technological applications, and challenges the boundaries of fundamental science. Here, we use high-level first-principles theories that correctly reproduce all important electronic interactions (the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation) to estimate with unprecedented accuracy the energy differences between BN polymorphs, and thus overcome the accuracy hurdle that hindered previous theoretical studies. We show that the ground-state phase of BN is cubic and that the frequently observed two-dimensional hexagonal polymorph becomes entropically stabilized over the cubic at temperatures slightly above ambient conditions (Tc = 63+-20'C). We also reveal a new low-symmetry monoclinic phase that is extremely competitive with the other low-energy polymorphs and which could explain the origins of the experimentally observed ``compressed h--BN'' phase. Our theoretical findings therefore should stimulate new experimental efforts in bulk BN as well as promote the use of high-level theories in modelling of technologically relevant van der Waals materials.<br>

2019 ◽  
Author(s):  
Claudio Cazorla ◽  
Tim Gould

Boron nitride (BN) is a material with outstanding technological promise because of its exceptional thermochemical stability, structural, electronic and thermal conductivity properties, and extreme hardness. Yet, the relative thermodynamic stability of its most common polymorphs (diamond-like cubic and graphite-like hexagonal) has not been resolved satisfactorily because of the crucial role played by kinetic factors in the formation of BN phases at high temperatures and pressures (experiments), and by competing bonding, electrostatic and many-body dispersion forces in BN cohesion (theory). This lack of understanding hampers the development of potential technological applications, and challenges the boundaries of fundamental science. Here, we use high-level first-principles theories that correctly reproduce all important electronic interactions (the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation) to estimate with unprecedented accuracy the energy differences between BN polymorphs, and thus overcome the accuracy hurdle that hindered previous theoretical studies. We show that the ground-state phase of BN is cubic and that the frequently observed two-dimensional hexagonal polymorph becomes entropically stabilized over the cubic at temperatures slightly above ambient conditions (Tc = 63+-20'C). We also reveal a new low-symmetry monoclinic phase that is extremely competitive with the other low-energy polymorphs and which could explain the origins of the experimentally observed ``compressed h--BN'' phase. Our theoretical findings therefore should stimulate new experimental efforts in bulk BN as well as promote the use of high-level theories in modelling of technologically relevant van der Waals materials.<br>


2019 ◽  
Author(s):  
Claudio Cazorla ◽  
Tim Gould

Boron nitride (BN) is a material with outstanding technological promise because of its exceptional thermochemical stability, structural, electronic and thermal conductivity properties, and extreme hardness. Yet, the relative thermodynamic stability of its most common polymorphs (diamond-like cubic and graphite-like hexagonal) has not been resolved satisfactorily because of the crucial role played by kinetic factors in the formation of BN phases at high temperatures and pressures (experiments), and by competing bonding, electrostatic and many-body dispersion forces in BN cohesion (theory). This lack of understanding hampers the development of potential technological applications, and challenges the boundaries of fundamental science. Here, we use high-level first-principles theories that correctly reproduce all important electronic interactions (the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation) to estimate with unprecedented accuracy the energy differences between BN polymorphs, and thus overcome the accuracy hurdle that hindered previous theoretical studies. We show that the ground-state phase of BN is cubic and that the frequently observed two-dimensional hexagonal polymorph becomes entropically stabilized over the cubic at temperatures slightly above ambient conditions (Tc = 63+-20'C). We also reveal a new low-symmetry monoclinic phase that is extremely competitive with the other low-energy polymorphs and which could explain the origins of the experimentally observed ``compressed h--BN'' phase. Our theoretical findings therefore should stimulate new experimental efforts in bulk BN as well as promote the use of high-level theories in modelling of technologically relevant van der Waals materials.<br>


2019 ◽  
Vol 5 (1) ◽  
pp. eaau5832 ◽  
Author(s):  
Claudio Cazorla ◽  
Tim Gould

Boron nitride (BN) is a material with outstanding technological promise due to its exceptional thermochemical stability, structural, electronic, and thermal conductivity properties, and extreme hardness. Yet, the relative thermodynamic stability of its most common polymorphs (diamond-like cubic and graphite-like hexagonal) has not been resolved satisfactorily because of the crucial role played by kinetic factors in the formation of BN phases at high temperatures and pressures (experiments) and by competing bonding and electrostatic and many-body dispersion forces in BN cohesion (theory). This lack of understanding hampers the development of potential technological applications and challenges the boundaries of fundamental science. Here, we use high-level first-principles theories that correctly reproduce all important electronic interactions (the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation) to estimate with unprecedented accuracy the energy differences between BN polymorphs and thus overcome the accuracy hurdle that hindered previous theoretical studies. We show that the ground-state phase of BN is cubic and that the frequently observed hexagonal polymorph becomes entropically stabilized over the cubic at temperatures slightly above ambient conditions (Tc→h = 335 ± 30 K). We also reveal a low-symmetry monoclinic phase that is extremely competitive with the other low-energy polymorphs and that could explain the origins of the experimentally observed “compressed h-BN” phase. Our theoretical findings therefore should stimulate new experimental efforts in bulk BN and promote the use of high-level theories in modeling of technologically relevant van der Waals materials.


2018 ◽  
Author(s):  
Claudio Cazorla ◽  
Tim Gould

Boron nitride (BN) is a material with outstanding technological promise because of its exceptional thermochemical stability, structural, electronic and thermal conductivity properties, and extreme hardness. Yet, the relative thermodynamic stability of its most common polymorphs (diamond-like cubic and graphite-like hexagonal) has not been resolved satisfactorily because of the crucial role played by kinetic factors in the formation of BN phases at high temperatures and pressures (experiments), and by competing bonding, electrostatic and many-body dispersion forces in BN cohesion (theory). This lack of understanding hampers the development of potential technological applications, and challenges the boundaries of fundamental science. Here, we use high-level first-principles theories that correctly reproduce all important electronic interactions (the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation) to estimate with unprecedented accuracy the energy differences between BN polymorphs, and thus overcome the accuracy hurdle that hindered previous theoretical studies. We show that the ground-state phase of BN is cubic and that the frequently observed two-dimensional hexagonal polymorph becomes entropically stabilized over the cubic at temperatures slightly above ambient conditions (Tc = 63+-20'C). We also reveal a new low-symmetry monoclinic phase that is extremely competitive with the other low-energy polymorphs and which could explain the origins of the experimentally observed ``compressed h--BN'' phase. Our theoretical findings therefore should stimulate new experimental efforts in bulk BN as well as promote the use of high-level theories in modelling of technologically relevant van der Waals materials.<br>


2004 ◽  
Vol 829 ◽  
Author(s):  
Guido Satta ◽  
Giancarlo Cappellini ◽  
Valerio Olevano ◽  
Lucia Reining

ABSTRACTWe present state of the art fist-principles calculations for the optical spectra and the loss functions of bulk boron nitride in the cubic (c-BN) and in the hexagonal (h-BN) phases. We start from a DFT-LDA density functional Khon-Sham bandstructure to investigate the influence of many-body effects beyond the Random Phase Approximation (RPA) on the optical spectra through the inclusion of self-energy and excitonic effects by a GW calculation and the solution of the Bethe-Salpeter equation. For the loss function we only perform RPA calculations. We show to which extent the description of many-body effects is important for a meaningiful comparison with experiment, and when they can be neglected.


1969 ◽  
Vol 47 (8) ◽  
pp. 847-852 ◽  
Author(s):  
M. Revzen ◽  
L. E. H. Trainor

A new way of presenting the random phase and ladder approximations is introduced which provides a convenient, probabilistic classification scheme and makes the fundamental nature of these approximations transparent. The physical interpretation of these approximations is reviewed in the light of this new method of presentation and the natural propagators to be associated with each approximation are discussed.


1992 ◽  
Vol 272 ◽  
Author(s):  
Vitaly V. Kresin

ABSTRACTDipole photoabsorption spectra of small clusters are analyzed. Two types of systems are considered: metal clusters and the carbon fullerenes. Both have been found to exhibit strong collective photoabsorption modes associated with the motion of delocalized electrons. We describe analytical results for the resonance frequencies in both spherical (closed-shell metallic, C60 ) and spheroidal (openshell metallic, C70) particles. The calculation is based on the techniques of many-body physics (random-phase approximation, sum rules), affords a unified view of the dynamical response of microscopic clusters, and leads to good agreement with experimental data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erfu Liu ◽  
Jeremiah van Baren ◽  
Zhengguang Lu ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

AbstractExciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe2 and WSe2 gating devices encapsulated by boron nitride. We observe gate-tunable exciton polarons associated with the 1 s–3 s exciton Rydberg states. The ground and excited exciton polarons exhibit comparable energy redshift (15~30 meV) from their respective bare excitons. The robust excited states contradict the trion picture because the trions are expected to dissociate in the excited states. When the Fermi sea expands, we observe increasingly severe suppression and steep energy shift from low to high exciton-polaron Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Our experiment and theory demonstrate the exciton-polaron nature of both the ground and excited excitonic states in charged monolayer MoSe2 and WSe2.


2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Jacopo De Nardis ◽  
Milosz Panfil ◽  
Andrea Gambassi ◽  
Leticia Cugliandolo ◽  
Robert Konik ◽  
...  

Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained for the Bose gas in one spatial dimension by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.


2006 ◽  
Vol 15 (02) ◽  
pp. 520-528 ◽  
Author(s):  
P. RING

Modern methods for the description of the nuclear many-body system use the concepts of density functional theory (DFT) and of effective field theory (EFT). Relativistic Hartree Bogoliubov (RHB) theory is a covariant version of this method, which takes into account Lorentz symmetry and pairing correlations in a fully self-consistent way. This theory has been used in the past for a very successful phenomenological description of ground state properties of nuclei all over the periodic table. Recently is also has been extended for the investigation of excited states. We discuss the calculation of rotational bands within cranked RHB-theory and recent investigations of vibrational excitations within the framework of relativistic Quasiparticle Random Phase Approximation (QRPA).


Sign in / Sign up

Export Citation Format

Share Document