scholarly journals Structural Basis for Selectivity in Flavin-Dependent Monooxygenase-Catalyzed Oxidative Dearomatization

2018 ◽  
Author(s):  
Attabey Rodríguez Benítez ◽  
Sara Tweedy ◽  
Summer A. Baker Dockrey ◽  
April L. Lukowski ◽  
Troy Wymore ◽  
...  

Herein, we disclose the structural basis for substrate binding in TropB, which performs a synthetically challenging asymmetric oxidative dearomatization reaction with exquisite site- and stereoselectivity across a range of substrates, providing a foundation for future protein engineering and reaction development efforts. Our hypothesis for substrate binding is informed by the first crystal structure of TropB and molecular dynamics simulations with the corresponding computational TropB model and is supported by experimental data.

2018 ◽  
Author(s):  
Attabey Rodríguez Benítez ◽  
Sara Tweedy ◽  
Summer A. Baker Dockrey ◽  
April L. Lukowski ◽  
Troy Wymore ◽  
...  

Herein, we disclose the structural basis for substrate binding in TropB, which performs a synthetically challenging asymmetric oxidative dearomatization reaction with exquisite site- and stereoselectivity across a range of substrates, providing a foundation for future protein engineering and reaction development efforts. Our hypothesis for substrate binding is informed by the first crystal structure of TropB and molecular dynamics simulations with the corresponding computational TropB model and is supported by experimental data.


2021 ◽  
Author(s):  
Aparna Vilas Dongre ◽  
Sudip Das ◽  
Asutosh Bellur ◽  
Sanjeev Kumar ◽  
Anusha Chandrashekarmath ◽  
...  

AbstractStability of proteins from hyperthermophiles enabled by reduction of conformational flexibility is realized through various mechanisms. Presence of a stable, hydrolysis-resistant succinimide arising from cyclization of the side chains of aspartyl/asparaginyl residues with backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ. Here, we describe the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase (MjGATase) and address the mechanism of a succinimide-induced increased thermostability using molecular dynamics simulations. This study reveals the interplay of negatively charged electrostatic shield and n→π* interactions in preventing succinimide hydrolysis. The stable succinimidyl residue induces formation of a ‘conformational-lock’, reducing protein flexibility. Protein destabilization upon replacement with the Φ-restricted prolyl residue highlights the specificity of the conformationally restrained succinimidyl residue in imparting hyperthermostability. The conservation of succinimide-forming tripeptide sequence (E(N/D)(E/D)) in a group of archaeal GATases suggests an adaptation of this otherwise detrimental post-translational modification as an inducer of thermostability.


Author(s):  
Sheng Dong ◽  
Jingfei Chen ◽  
Xingwang Zhang ◽  
Fei Guo ◽  
Li Ma ◽  
...  

Selective oxidation of C-H bonds in alkylphenols holds great significance for not only structural derivatization in pharma- and bio-manufacturing but also biological degradation of these toxic chemicals in environmental protection. A unique chemomimetic biocatalytic system using enzymes from a p-cresol biodegradation pathway has recently been developed. As the central biocatalyst, the cytochrome P450 monooxygenase CreJ oxidizes diverse p- and m-alkylphenyl phosphates with perfect stereoselectivity at different efficiencies. However, the mechanism of regio- and stereoselectivity of this chemomimetic biocatalytic system remained unclear. Here, using p- and m-ethylphenyl substrates, we elucidate the CreJ-catalyzed key steps for selective oxidations. The crystal structure of CreJ in complex with m-ethylphenyl phosphate was solved and compared with its complex structure with p-ethylphenyl phosphate isomer. The results indicate that the conformational changes of substrate-binding residues are slight, while the substrate promiscuity is achieved mainly by the available space in the catalytic cavity. Moreover, the catalytic preferences of regio- and stereoselective hydroxylation for the two ethylphenyl substrates is explored by molecular dynamics simulations. The ethyl groups in the complexes display different flexibility, and the distances of the active oxygen to Hpro-S and Hpro-R of methylene agree with the experimental stereoselectivity. The regioselectivity can be explained by the distances and bond dissociation energy. These results provide not only the mechanistic insights of CreJ into its regio- and stereoselectivity but also the structural basis for further P450 enzyme design and engineering. Importance The key cytochrome P450 monooxygenase CreJ showed excellent regio- and stereoselectivity in the oxidation of various alkylphenol substrates. C-H bond functionalization of these toxic alkylphenols holds great significance both for biological degradation of these environmental chemicals and production of value-added structural derivatives in pharmaceutical and biochemical industries. Our results, combined with in vitro enzymatic assays, crystal structure determination of enzyme-substrate complex, and molecular dynamics simulations, provide not only significant mechanism elucidation of the regio- and stereoselective catalyzation mediated by CreJ, but also the promising directions for the future engineering efforts of this enzyme towards more useful products. It also has great extendable potentials to couple this multifunctional P450 biocatalyst with other post modifying enzymes (e.g. hydroxyl based glycosylase) to access more alkylphenol derived high-value chemicals through environment-friendly biocatalysis and biotransformation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 734
Author(s):  
Aija Trimdale ◽  
Anatoly Mishnev ◽  
Agris Bērziņš

The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed by the diOHBAs. The crystal structure analysis showed that classical carboxylic acid homodimers and ring-like hydrogen bond motifs consisting of six diOHBA molecules are prominently present in almost all analyzed crystal structures. Both experimental spectroscopic investigations and molecular dynamics simulations indicated that the extent of intramolecular bonding between carboxyl and hydroxyl groups in solution has the most significant impact on the solid phases formed by the diOHBAs. Additionally, the extent of hydrogen bonding with solvent molecules and the mean lifetime of solute–solvent associates formed by diOHBAs and 2-propanol were also investigated.


Author(s):  
Maryam Reisjalali ◽  
J. Javier Burgos-Marmol ◽  
Rex Manurung ◽  
Alessandro Troisi

The microscopic structure of high mobility semiconducting polymers is known to be essential for their performance but it cannot be easily deduced from the available experimental data. A series of...


2016 ◽  
Vol 18 (37) ◽  
pp. 25806-25816 ◽  
Author(s):  
Carlos Navarro-Retamal ◽  
Anne Bremer ◽  
Jans Alzate-Morales ◽  
Julio Caballero ◽  
Dirk K. Hincha ◽  
...  

Unfolding of intrinsically unstructured full-length LEA proteins in a differentially crowded environment can be modeled by 30 ns MD simulations in accordance with experimental data.


1992 ◽  
Vol 291 ◽  
Author(s):  
C. Z. Wang ◽  
K. M. Ho ◽  
C. T. Chan

ABSTRACTTight-binding molecular-dynamics simulations are performed to study the structure of liquid and amorphous carbon. Comparisons of our results with ab initiomolecular dynamics (Car-Parrinello) results and experimental data show that the scheme has sufficient accuracy and efficiency for realistic simulation study of the structural properties of complex carbon systems.


2017 ◽  
Vol 1865 (11) ◽  
pp. 1406-1415 ◽  
Author(s):  
Bhaskar Sharma ◽  
Sahayog N. Jamdar ◽  
Biplab Ghosh ◽  
Pooja Yadav ◽  
Ashwani Kumar ◽  
...  

2018 ◽  
Vol 20 (9) ◽  
pp. 6409-6420 ◽  
Author(s):  
Juan Duan ◽  
Chuncai Hu ◽  
Jiafan Guo ◽  
Lianxian Guo ◽  
Jia Sun ◽  
...  

We have investigated the substrate-binding pathways of NDM-1 via unbiased molecular dynamics simulations and metadynamics.


Sign in / Sign up

Export Citation Format

Share Document