backbone amide
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 12)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-13
Author(s):  
Henry W. Orton ◽  
Iresha D. Herath ◽  
Ansis Maleckis ◽  
Shereen Jabar ◽  
Monika Szabo ◽  
...  

Abstract. The metallo-β-lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δχ) tensors were determined by measuring pseudocontact shifts (PCSs) of backbone amide protons. The Δχ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 359
Author(s):  
David Milićević ◽  
Jan Hlaváč

A new approach to on-resin detection of three model proteases (trypsin, chymotrypsin, and thrombin) has been developed, while at the same time already described methodology for simultaneous detection of two enzymes (trypsin and chymotrypsin) has been additionally generalized. Appropriate immobilized substrates, comprising specifically cleavable peptide sequences capped with fluorescent dyes, have been synthesized on Rink Amide PEGA resin or Amino PEGA resin modified with backbone amide linker (BAL). Resulting solid support-bound probes were then dispersed into Tris-HCl buffer solution (pH = 8.0) and subjected to enzymatic cleavage. Liberated fluorophores have been tracked by fluorescence measuring. The competitive activities of studied proteases towards the thrombin probe have been efficiently limited and controlled by employing a Bowman-Birk inhibitor into a system.


2021 ◽  
Author(s):  
Henry W. Orton ◽  
Iresha D. Herath ◽  
Ansis Maleckis ◽  
Shereen Jabar ◽  
Monika Szabo ◽  
...  

Abstract. The metallo-β-lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δχ) tensors were determined by measuring pseudocontact shifts (PCS) of backbone amide protons. The Δχ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is located in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5166
Author(s):  
Dominika Iwan ◽  
Karolina Kamińska ◽  
Elżbieta Wojaczyńska

Carbon–carbon bond forming reactions, such as aldol reaction and condensation, belong to extremely desired transformations as manifested by >25,000 entries in SciFinder. Their stereoselective variant requires the use of an appropriate catalyst with a strictly defined structure. Hence, chiral 2-azabicycloalkane-based catalysts were designed, synthesized and tested in a stereoselective aldol reaction between cyclic/acyclic ketone and p-nitrobenzaldehyde both in organic and aqueous media. Among catalysts containing a chiral bicyclic backbone, amide based on 2-azabicyclo[3.2.1]octane and pyrrolidine units showed the best catalytic activity and afforded aldol product in excellent chemical yields (up to 95%) and good diastereo- and enantioselectivity (dr 22:78, ee up to 63%).


2021 ◽  
Author(s):  
Aparna Vilas Dongre ◽  
Sudip Das ◽  
Asutosh Bellur ◽  
Sanjeev Kumar ◽  
Anusha Chandrashekarmath ◽  
...  

AbstractStability of proteins from hyperthermophiles enabled by reduction of conformational flexibility is realized through various mechanisms. Presence of a stable, hydrolysis-resistant succinimide arising from cyclization of the side chains of aspartyl/asparaginyl residues with backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ. Here, we describe the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase (MjGATase) and address the mechanism of a succinimide-induced increased thermostability using molecular dynamics simulations. This study reveals the interplay of negatively charged electrostatic shield and n→π* interactions in preventing succinimide hydrolysis. The stable succinimidyl residue induces formation of a ‘conformational-lock’, reducing protein flexibility. Protein destabilization upon replacement with the Φ-restricted prolyl residue highlights the specificity of the conformationally restrained succinimidyl residue in imparting hyperthermostability. The conservation of succinimide-forming tripeptide sequence (E(N/D)(E/D)) in a group of archaeal GATases suggests an adaptation of this otherwise detrimental post-translational modification as an inducer of thermostability.


2021 ◽  
Author(s):  
Rupashree Dass ◽  
Enrico Corlianò ◽  
Frans A. A. Mulder

AbstractAlthough electrostatics have long been recognized to play an important role in hydrogen exchange (HX) with solvent, the quantitative assessment of its magnitude in the unfolded state has hitherto been lacking. This limits the utility of HX as a quantitative method to study protein stability, folding and dynamics. Using the intrinsically disordered human protein α-synuclein as a proxy for the unfolded state, we show that a hybrid mean-field approach can effectively compute the electrostatic potential at all backbone amide positions along the chain. From the electrochemical potential a fourfold reduction in hydroxide concentration near the protein backbone is predicted for the C-terminal domain, a prognosis that is in direct agreement with experimentally-derived protection factors from NMR spectroscopy. Thus, impeded HX for the C-terminal region of α-synuclein is not the result of intramolecular hydrogen bonding and/or structure formation.


2020 ◽  
Author(s):  
Shaheer Rizwan ◽  
Douglas Pike ◽  
Saroj Poudel ◽  
Vikas Nanda

AbstractCofactor binding sites in proteins often are composed of favorable interactions of specific cofactors with the sidechains and/or backbone protein fold motifs. In many cases these motifs contain left-handed conformations which enable tight turns of the backbone that present backbone amide protons in direct interactions with cofactors termed ‘cationic nests’. Here, we defined alternating handedness of secondary structure as a search constraint within the PDB to systematically identify these cofactor binding nests. We identify unique alternating handedness structural motifs which are specific to the cofactors they bind. These motifs can guide the design of engineered folds that utilize specific cofactors and also enable us to gain a deeper insight into the evolution of the structure of cofactor binding sites.


2020 ◽  
Vol 18 (19) ◽  
pp. 3690-3696 ◽  
Author(s):  
Matthew P. Sarnowski ◽  
Juan R. Del Valle

Backbone amide hydroxylation of peptide strands enhances β-hairpin folding.


Sign in / Sign up

Export Citation Format

Share Document