DFT Benchmark Study of the O--O Bond Dissociation Energy in Peroxides Validated with High-Level Ab-Initio Calculations

Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>

2020 ◽  
Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>


2020 ◽  
Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>


2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


2018 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized; ; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40x10 data and the present revision.</p>


2013 ◽  
Vol 6 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Peter Poliak ◽  
Adam Vagánek

Abstract In this work, C-H bond dissociation enthalpies (BDE) and vertical ionization potentials (IP) for various hydrocarbons and ketones were calculated using four density functional approaches. Calculated BDEs and IPs were correlated with experimental data. The linearity of the corresponding dependences can be considered very good. Comparing two used functionals, B3LYP C-H BDE values are closer to experimental results than PBE0 values for both used basis sets. The 6-31G* basis set employed with both functionals, gives the C-H BDEs closer to the experimental values than the 6-311++G** basis set. Using the obtained linear dependences BDEexp = f (BDEcalc), the experimental values of C-H BDEs for some structurally related compounds can be estimated solely from calculations. As a descriptor of the C-H BDE, the IPs and 13C NMR chemical shifts have been investigated using data obtained from the B3LYP/6-31G* calculations. There is a slight indication of linear correlation between IPs and C-H BDEs in the sets of simple alkanes and alkenes/ cycloalkenes. However, for cycloalkanes and aliphatic carbonyl compounds, no linear correlation was found. In the case of the 13C NMR chemical shifts, the correlation with C-H BDEs can be found for the sets of alkanes and cycloalkanes, but for the other studied molecules, no trends were detected.


2018 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized; ; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40x10 data and the present revision.</p>


2014 ◽  
Vol 915-916 ◽  
pp. 675-678
Author(s):  
Xin Fang Su ◽  
Wei Huang ◽  
Hai Ying Wu

Density functional theory (DFT) is used to calculate the C-NO2bond dissociation energies (BDEs) in nitrobenzene; 3-amino-nitrobenze; 4-amino-nitrobenze; 1,3-dinitrobenzene; 1,4-dinitrobenzene; 2-methyl-nitrobenzene; 4-methyl-nitrobenzene and 1,3,5-trinitrobenzene nitroaromatic molecular system. B3P86 and PBE0 methods in combination with 6-31G** and 6-311G** basis sets are employed. Comparison between the computational results and the experimental values reveals that the calculated C-NO2bond BDEs can be improved from B3P86 to PBE0 functional. Level of theory employing PBE0/6-311G** is found to be sufficiently reliable to compute BDEs of C-NO2bond for nitroaromatic molecules with an average absolute error of 0.98 kcal mol-1.


2020 ◽  
Vol 44 (11-12) ◽  
pp. 762-768
Author(s):  
AA Khairbek ◽  
M Abd Al-Hakim Badawi

The standard enthalpies of hydrogenation of 29 unsaturated hydrocarbon compounds were calculated in the gas phase by M06-2X theory with the 6-31g(d) and cc-pVXZ, where X = DZ, TZ, QZ, as well as by complete basis set extrapolated level. Geometries of compounds were optimized at the M06-2X/6-31g(d) level. These M06-2X geometries were used in the M06-2X, and extrapolation calculations with cc-pVXZ basis sets. Comparison of calculation and experimental results shows that the mean absolute deviations between the calculated and experimental enthalpies of hydrogenation range from 25.1 to 5.1 kJ mol−1 at M06-2X calculations, and when using cc-pV(DT)Z extrapolated level, the mean absolute deviations have decreased to 2.7. The results of some calculations showed that the deviations from experimental values are located inside the “chemical accuracy” (±1 kcal mol−1≈±4.2 kJ mol−1). Very good linear correlations between experimental and calculated enthalpies of hydrogenation have been obtained at M06-2X/cc-pVTZ and cc-pV(DT)Z extrapolated levels (standard deviation = 3.2 and 3.4 kJ mol−1, respectively).


2011 ◽  
Vol 10 (02) ◽  
pp. 179-189 ◽  
Author(s):  
XIAO-HONG LI ◽  
GENG-XIN YIN ◽  
XIAN-ZHOU ZHANG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 20 aliphatic alcohol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, and B3P86) methods with 6-311G** basis set and the complete basis set (CBS-Q) method together. It is demonstrated that B3P86 and CBS-Q methods are accurate to compute the reliable BDEs for aliphatic alcohol compounds. In order to test whether the non-local BLYP method suggested by Jursic18 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for 20 aliphatic alcohol compounds are also calculated using BLYP/6-31+G*, BLYP/6-31G*, and B3P86 methods with 6-31G*, 6-31+G*, and 6-31G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is sensitive to the basis sets. Considering the inevitably computational cost of CBS-Q method and the reliability of the B3P86 calculation, B3P86 method with 6-31G** basis set may be more suitable to calculate the BDEs of the C–O bond for aliphatic alcohol compounds.


2016 ◽  
Vol 94 (12) ◽  
pp. 1082-1089 ◽  
Author(s):  
Farzaneh Sarrami ◽  
Li-Juan Yu ◽  
Amir Karton

We obtained accurate thermochemical properties for the ortho-, meta-, and para-dicarborane isomers (C2B10H12) by means of explicitly correlated high-level thermochemical procedures. The thermochemical properties include heats of formation, isomerization energies, C–H and B–H bond dissociation energies (BDEs), and ionization potentials. Of these only the ionization potentials are known experimentally. Our best theoretical ionization potentials, obtained by means of the ab initio W1–F12 thermochemical protocol, was 241.50 kcal mol–1 (para-dicarborane), 238.45 kcal mol–1 (meta-dicarborane), and 236.54 kcal mol–1 (ortho-dicarborane). These values agree with the experimental values adopted by the National Institute of Standards and Technology (NIST) thermochemical tables to within overlapping uncertainties. However, they suggest that the experimental values may represent significant underestimations. For all isomers, the C–H BDEs are systematically higher than the B–H BDEs because of the relative stability of the boron-centred radicals. The C–H BDEs for the three isomers cluster within a narrow energetic interval, namely between 110.8 kcal mol–1 (para-dicarborane) and 111.7 kcal mol–1 (meta-dicarborane). The B–H BDEs cluster within a larger interval ranging between 105.8 and 108.1 kcal mol–1 (both obtained for ortho-dicarborane). We used our benchmark W1–F12 data to assess the performance of a number of lower cost composite ab initio methods. We found that the Gaussian-3 procedures (G3(MP2)B3 and G3B3) result in excellent performance with overall root-mean-square deviations (RMSDs) of 0.3–0.4 kcal mol–1 for the isomerization, ionization, and bond dissociation energies. However, the Gaussian-4 procedures (G4, G4(MP2), and G4(MP2)-6X) showed relatively poor performance with overall RMSDs of 1.3–3.7 kcal mol–1.


Sign in / Sign up

Export Citation Format

Share Document