Performance Comparison of Machine Learning Techniques in Intrusion Detection using Rapid Miner

2018 ◽  
Vol 6 (11) ◽  
pp. 1001-1005
Author(s):  
Sanjeet Choudhary ◽  
Varsha Namdeo ◽  
Abhijit Dwivedi

The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2509 ◽  
Author(s):  
Kamran Shaukat ◽  
Suhuai Luo ◽  
Vijay Varadharajan ◽  
Ibrahim A. Hameed ◽  
Shan Chen ◽  
...  

Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity. We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-domains of cyber threats. This work also provides a brief introduction of machine learning models besides commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced during the application of machine learning techniques in cybersecurity.


Sign in / Sign up

Export Citation Format

Share Document