Improving QoS Parameters for Cloud Data Centers Using Dynamic Particle Swarm Optimization Load Balancing Algorithm

2019 ◽  
Vol 7 (6) ◽  
pp. 337-342
Author(s):  
Sanjay G. Patel ◽  
S.D. Panchal
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 389 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
Muhammad Bilal ◽  
...  

With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.


2021 ◽  
Vol 11 (3) ◽  
pp. 34-48
Author(s):  
J. K. Jeevitha ◽  
Athisha G.

To scale back the energy consumption, this paper proposed three algorithms: The first one is identifying the load balancing factors and redistribute the load. The second one is finding out the most suitable server to assigning the task to the server, achieved by most efficient first fit algorithm (MEFFA), and the third algorithm is processing the task in the server in an efficient way by energy efficient virtual round robin (EEVRR) scheduling algorithm with FAT tree topology architecture. This EEVRR algorithm improves the quality of service via sending the task scheduling performance and cutting the delay in cloud data centers. It increases the energy efficiency by achieving the quality of service (QOS).


Load balancing algorithms and service broker policies plays a crucial role in determining the performance of cloud systems. User response time and data center request servicing time are largely affected by the load balancing algorithms and service broker policies. Several load balancing algorithms and service broker polices exist in the literature to perform the data center allocation and virtual machine allocation for the given set of user requests. In this paper, we investigate the performance of equally spread current execution (ESCE) based load balancing algorithm with closest data center(CDC) service broker policy in a cloud environment that consists of homogeneous and heterogeneous device characteristics in data centers and heterogeneous communication bandwidth that exist between different regions where cloud data centers are deployed. We performed a simulation using CloudAnalyst an open source software with different settings of device characteristics and bandwidth. The user response time and data center request servicing time are found considerably less in heterogeneous environment.


2017 ◽  
Vol 16 (3) ◽  
pp. 6247-6253
Author(s):  
Ashima Ashima ◽  
Mrs Navjot Jyoti

Cloud computing is a vigorous technology by which a user can get software, application, operating system and hardware as a service without actually possessing it and paying only according to the usage. Cloud Computing is a hot topic of research for the researchers these days. With the rapid growth of Interne technology cloud computing have become main source of computing for small as well big IT companies. In the cloud computing milieu the cloud data centers and the users of the cloud-computing are globally situated, therefore it is a big challenge for cloud data centers to efficiently handle the requests which are coming from millions of users and service them in an efficient manner. Load balancing is a critical aspect that ensures that all the resources and entities are well balanced such that no resource or entity neither is under loaded nor overloaded. The load balancing algorithms can be static or dynamic.  Load balancing in this environment means equal distribution of workload across all the nodes. Load balancing provides a way of achieving the proper utilization of resources and better user satisfaction. Hence, use of an appropriate load balancing algorithm is necessary for selecting the virtual machines or servers. This paper focuses on the load balancing algorithm which distributes the incoming jobs among VMs optimally in cloud data centers. In this paper, we have reviewed several existing load balancing mechanisms and we have tried to address the problems associated with them.


Sign in / Sign up

Export Citation Format

Share Document