The role of prostate HistoScanning in detecting prostate cancer

2015 ◽  
Vol 17 (7) ◽  
pp. 8-11
Author(s):  
A.V. Govorov ◽  
◽  
A.O. Vasilyev ◽  
A.V. Sadchenko ◽  
E.A. Prilepskaya ◽  
...  
Keyword(s):  
2004 ◽  
Vol 171 (4S) ◽  
pp. 108-108
Author(s):  
Rainer Kuefer ◽  
Kathleen Day ◽  
Jonathan Rios-Doria ◽  
Matthias Hofer ◽  
Arul Chinnaiyan ◽  
...  

2020 ◽  
Author(s):  
W Kisel ◽  
S Conrad ◽  
S Füssel ◽  
U Sommer ◽  
GB Baretton ◽  
...  

2018 ◽  
Author(s):  
Vicente Herrero-Aguayo ◽  
Juan M Jimenez-Vacas ◽  
Enrique Gomez-Gomez ◽  
Antonio J Leon-Gonzalez ◽  
Prudencio Saez-Martinez ◽  
...  

2020 ◽  
Vol 28 (3) ◽  
pp. 399-405
Author(s):  
Fabrizio Fontana ◽  
Olga A. Babenko

Aim of this letter is to attract the attention of journal readers to the study of exosomes as an important direction in the development of Oncology, in particular, in the diagnosis and treatment of prostate cancer. Exosomes are produced by tumor cells and regulate proliferation, metastasis, and the development of chemoresistance. Their extraction from biological fluids allows further use of these vesicles as potential biomarkers of prostate cancer. In the future, exosomes can be successfully used in the delivery of drugs and other anti-tumor substances to cancer cells.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


Sign in / Sign up

Export Citation Format

Share Document