scholarly journals Nonsteroidal anti-inflammatory drugs and ibuprofen for COVID-19: a systematic review

2020 ◽  
Vol 22 (12) ◽  
pp. 31-36
Author(s):  
Marina V. Leonova ◽  

COVID-19 pandemic is currently the most pressing public health problem worldwide. Despite growing knowledge about the nature of SARS-CoV-2-assosiated severe acute respiratory syndrome, the treatment options are still poorly defined. The safety of nonsteroidal anti-inflammatory drugs (NSAIDs), in particular ibuprofen, has been questioned without any supporting evidence. This has contributed to a number of observational studies evaluating the effect of ibuprofen on COVID-19 disease outcomes. A search of publications was carried out and a systematic review of 9 studies was presented, pharmacodynamic effects of ibuprofen were considered in terms of the effect on angiotensin-converting enzyme 2 and cyclooxygenase. The studies data have shown no direct interaction between ibuprofen and SARS-CoV-2, no evidence that ibuprofen affects the up-regulation of angiotensin-converting enzyme 2 as a COVID-19 receptor in human studies. Observational studies have not found evidence that ibuprofen, when used chronically before COVID-19 or when acutely used to relieve symp-toms of COVID-19, contributes to infection or increases the risk of adverse outcomes (mortality, risk of hospitalization, risk of mechanical ventilation). Subse-quently, international regulatory authorities (World Health Organization, European Medical Agency, FDA) concluded that there is no link between the more severe course of COVID-19 and NSAID treatment; paracetamol and other NSAIDs (ibuprofen) are recommended to treat the symptoms of COVID-19; patients on chronic NSAID treatment are warned not to discontinue it, as their condition may worsen.

INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 16-24
Author(s):  
Mohammed Oday Ezzat ◽  
Basma M. Abd Razik ◽  
Kutayba F. Dawood

The prevalence of a novel coronavirus (2019-nCoV) in the last few months represents a serious threat as a world health emergency concern. Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor for the respiratory syndrome of coronavirus epidemic in 2019 (2019-nCoV). In this work, the active site of ACE2 is successfully located by Sitmap prediction tool and validated by different marketed drugs. To design and discover new medical countermeasure drugs, we evaluate a total of 184 molecules of 7-chloro-N-methylquinolin-4-amine derivatives for binding affinity inside the crystal structure of ACE2 located active site. A novel series of N-substituted 2,5-bis[(7-chloroquinolin-4-yl)amino]pentanoic acid derivatives is generated and evaluated for a prospect as a lead compound for (2019-nCoV) medication with a docking score range of (-10.60 to -8.99) kcal/mol for the highest twenty derivatives. Moreover, the ADME pharmaceutical properties were evaluated for further proposed experimental evaluation in vitro or in vivo


Author(s):  
Annalise E Zemlin ◽  
Owen J Wiese

Since the first cases of atypical pneumonia linked to the Huanan Seafood Wholesale Market in Wuhan, China, were described in late December 2019, the global landscape has changed radically. In March 2020, the World Health Organization declared COVID-19 a global pandemic, and at the time of writing this review, just over three million individuals have been infected with more than 200,000 deaths globally. Numerous countries are in ‘lockdown’, social distancing is the new norm, even the most advanced healthcare systems are under pressure, and a global economic recession seems inevitable. A novel coronavirus (SARS-CoV-2) was identified as the aetiological agent. From experience with previous coronavirus epidemics, namely the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in 2004 and 2012 respectively, it was postulated that the angiotensin-converting enzyme-2 (ACE2) receptor is a possible port of cell entry. ACE2 is part of the renin-angiotensin system and is also associated with lung and cardiovascular disorders and inflammation. Recent studies have confirmed that ACE2 is the port of entry for SARS-CoV-2. Male sex, advanced age and a number of associated comorbidities have been identified as risk factors for infection with COVID-19. Many high-risk COVID-19 patients with comorbidities are on ACE inhibitors and angiotensin receptor blockers, and this has sparked debate about whether to continue these treatment regimes. Attention has also shifted to ACE2 being a target for future therapies or vaccines against COVID-19. In this review, we discuss COVID-19 and its complex relationship with ACE2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elizabeth M. Sajdel-Sulkowska

SARS-CoV-2, primarily considered a respiratory virus, is increasingly recognized as having gastrointestinal aspects based on its presence in the gastrointestinal (GI) tract and feces. SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 (ACE-2), a critical member of the renin-angiotensin-aldosterone system (RAAS) involved in the regulation of blood pressure and fluid system. In addition to the systemic endocrine functions, RAAS components are also involved in intracrine and organ-specific local functions. The angiotensin-converting enzyme 2 (ACE-2) is a key component of RAAS and a receptor for SARS-CoV-2. It is expressed in many tissues with gastrointestinal (GI) tract ACE-2 levels far exceeding those in the respiratory tract. SARS-CoV-2 binding to its receptor results in a deficiency of ACE-2 activity in endocrine, intracrine, and local lung and GI tract ACE-2. The local ACE-2 has different organ-specific functions, including hypertension-independent activities; dysregulations of these functions may contribute to multiorgan COVID-19 pathology, its severity, long-term effects, and mortality. We review supporting evidence from this standpoint. Notably, COVID-19 comorbidities involving hypertension, obesity, heart disease, kidney disease, and diabetes are associated with gastrointestinal problems and display ACE-2 deficits. While RAAS inhibitors target both endocrine and intracrine ACE-2 activity, the deficit of the local ACE-2 activity in the lungs and more so in the gut have not been targeted. Consequently, the therapeutic approach to COVID-19 should be carefully reconsidered. Ongoing clinical trials testing oral probiotic bound ACE-2 delivery are promising.


2020 ◽  
Author(s):  
Christopher Whitman

Abstract Starting December 30th, 2019, a virus spread from Wuhan, in the Hubei Province of China. The virus had soon been recognized as part of the Coronavirus and temporarily named 2019 Novel Coronavirus. The dramatic increase of infections led to the death of over 400 people, by Feb 4th, 2020. By this day the virus had already crossed into 27 countries. March 11th, 2020 the World Health Organization declared the Novel Coronavirus a pandemic, pointing to over 118,000 cases of infections in over 110 countries. This public health threat drove the international community to real-time sharing of the genetic sequences isolated from the viruses. We used these freely accessible genetic data, while leveraging bioinformatic tools, with the intent to explore possible contributions to address this threat. Angiotensin-converting Enzyme 2 Inhibition has been proven to be a valuable strategy address the spread of SARS. After proving remarkable genetic similarities between SARS and the 2019 Novel Coronavirus, we computationally built the first known ex-novo model of the 2019 Novel Coronavirus Spike Glycoprotein entirely generated from its aminoacidic sequence, using I-TASEER. We then assessed the 2019 Novel Coronavirus interaction with the human Angiotensin-converting Enzyme 2. This research prompts at the potential use of Angiotensin- converting Enzyme 2 receptors blockers, as both clinical and prophylaxis measures to contain the spread of 2019 Novel Coronavirus.


Sign in / Sign up

Export Citation Format

Share Document