scholarly journals Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016

2021 ◽  
Vol 5 (5) ◽  
pp. 1-11
Author(s):  
FuQing Huang ◽  
◽  
JiuHou Lei ◽  
Chao Xiong ◽  
JiaHao Zhong ◽  
...  
2019 ◽  
Author(s):  
Kun Wu ◽  
Jiyao Xu ◽  
Xinan Yue ◽  
Chao Xiong ◽  
Wenbin Wang ◽  
...  

Abstract. A large number of studies have shown that equatorial plasma bubbles (EPBs) occur mainly after sunset, and they usually drift eastward. However, in this paper, an unusual EPB event was simultaneously observed by an all-sky imager and the Global Navigation Satellite Systems (GNSS) network in southern China, during the recovery phase of geomagnetic storm happened on 6–8 November 2015. Observations from both techniques show that the EPBs appeared near dawn. Interestingly, the observational results show that the EPBs continued to develop after sunrise, and disappeared about one hour after sunrise. The development stage of EPBs lasted for at least about 3 hours. To our knowledge, this is the first time that the evolution of EPBs developing around sunrise was observed by an all-sky imager and the GNSS network. Our observation showed that the EPBs drifted westward, which was different from the usually eastward drifts of post-sunset EPBs. The simulation from TIE-GCM model suggest that the westward drift of EPBs should be related to the enhanced westward winds at storm time. Besides, break and recombination processes of EPBs were observed by the all-sky imager in the event. Associated with the development of EPBs, increasing in the ionospheric F region peak height was also observed near sunrise, and we suggest the enhance upward vertical plasma drift during geomagnetic storm plays a major role in triggering the EPBs near sunrise.


2020 ◽  
Vol 38 (1) ◽  
pp. 163-177
Author(s):  
Kun Wu ◽  
Jiyao Xu ◽  
Xinan Yue ◽  
Chao Xiong ◽  
Wenbin Wang ◽  
...  

Abstract. A large number of studies have shown that equatorial plasma bubbles (EPBs) occur mainly after sunset, and they usually drift eastward. However, in this paper, an unusual EPB event was simultaneously observed by an all-sky imager and the global navigation satellite system (GNSS) network in southern China, during the recovery phase of a geomagnetic storm that happened on 6–8 November 2015. Observations from both techniques show that the EPBs appeared near dawn. Interestingly, the observational results show that the EPBs continued to develop after sunrise, and they disappeared about 1 h after sunrise. The development stage of EPBs lasted for at least about 3 h. To our knowledge, this is the first time that the evolution of EPBs developing around sunrise was observed by an all-sky imager and the GNSS network. Our observation showed that the EPBs drifted westward, which was different from the usual eastward drifts of post-sunset EPBs. The simulation from the Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) suggest that the westward drift of EPBs should be related to the enhanced westward winds at storm time. Besides this, bifurcation and merging processes of EPBs were observed by the all-sky imager in the event. Associated with the development of EPBs, an increase in the peak height of the ionospheric F region was also observed near sunrise, and we suggest the enhanced upward vertical plasma drift during the geomagnetic storm plays a major role in triggering the EPBs near sunrise.


2020 ◽  
Author(s):  
Loren C. Chang ◽  
Cornelius Csar Jude Hisole Salinas ◽  
Yi-Chung Chiu ◽  
McArthur Jones ◽  
Chi-Kuang Chao ◽  
...  

2004 ◽  
Vol 22 (9) ◽  
pp. 3089-3098 ◽  
Author(s):  
W. J. Burke ◽  
C. Y. Huang ◽  
L. C. Gentile ◽  
L. Bauer

Abstract. We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs) observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γRT, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, Beq, and the angle, α, it makes with the dusk terminator line. The independence of α and Beq from the solar cycle phase justifies our comparisons. We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP) satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1) in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2) unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3) While EPB occurrence rates vary inversely with Beq, the relationships are very different in regions where Beq is increasing and decreasing with longitude. Results (2) and (3) indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γRT by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from high latitudes can overwhelm the damping effects of weak gradients in Pedersen conductance near dusk.


Sign in / Sign up

Export Citation Format

Share Document