scholarly journals Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time

2020 ◽  
Vol 38 (1) ◽  
pp. 163-177
Author(s):  
Kun Wu ◽  
Jiyao Xu ◽  
Xinan Yue ◽  
Chao Xiong ◽  
Wenbin Wang ◽  
...  

Abstract. A large number of studies have shown that equatorial plasma bubbles (EPBs) occur mainly after sunset, and they usually drift eastward. However, in this paper, an unusual EPB event was simultaneously observed by an all-sky imager and the global navigation satellite system (GNSS) network in southern China, during the recovery phase of a geomagnetic storm that happened on 6–8 November 2015. Observations from both techniques show that the EPBs appeared near dawn. Interestingly, the observational results show that the EPBs continued to develop after sunrise, and they disappeared about 1 h after sunrise. The development stage of EPBs lasted for at least about 3 h. To our knowledge, this is the first time that the evolution of EPBs developing around sunrise was observed by an all-sky imager and the GNSS network. Our observation showed that the EPBs drifted westward, which was different from the usual eastward drifts of post-sunset EPBs. The simulation from the Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) suggest that the westward drift of EPBs should be related to the enhanced westward winds at storm time. Besides this, bifurcation and merging processes of EPBs were observed by the all-sky imager in the event. Associated with the development of EPBs, an increase in the peak height of the ionospheric F region was also observed near sunrise, and we suggest the enhanced upward vertical plasma drift during the geomagnetic storm plays a major role in triggering the EPBs near sunrise.

2020 ◽  
Vol 12 (4) ◽  
pp. 617
Author(s):  
Yuchen Wang ◽  
Nan Ding ◽  
Yu Zhang ◽  
Long Li ◽  
Xiaoyan Yang ◽  
...  

Global Navigation Satellite System (GNSS) tomography is a popular method for measuring and modelling water vapor in the troposphere. Presently, most studies use a cuboid-shaped tomographic region in their modelling, which represents the modelling region for all measurement epochs. This region is defined by the distribution of the GNSS signals skywards from a network of ground based GNSS stations for all epochs of measurements. However, in reality at each epoch the shape of the GNSS tomographic region is more likely to be an inverted cone. Unfortunately, this fixed conic tomographic region does not properly reflect the fact that the GNSS signal changes quickly over time. Therefore a dynamic or adaptive tomographic region is better suited. In this study, a new approach that adjusts the GNSS tomographic model to adapt the size of the GNSS network is proposed, which referred to as The High Flexibility GNSS Tomography (HFGT). Test data from different numbers of the GNSS stations are used and the results from HFGT are compared against that of radiosonde data (RS) to assess the accuracy of the HFGT approach. The results showed that the new approach is feasible for different numbers of the GNSS stations when a sufficient and uniformed distribution of GNSS signals is used. This is a novel approach for GNSS tomography.


2018 ◽  
Vol 13 (3) ◽  
pp. 518-525 ◽  
Author(s):  
Masato Iguchi ◽  

A dense Global Navigation Satellite System (GNSS) network has been deployed at Sakurajima volcano since 1995 and extends to the surrounding area of the Aira caldera. The ground deformation obtained by GNSS observation corresponds to transient eruptive activity of Sakurajima volcano, which has produced frequent vulcanian eruptions since 1955. Inflation of the volcano was detected prior to the increase in vulcanian eruptions in 1999, and resumption of the eruptions at the Showa crater. Magma intrusion events and an increase in eruptions in late 2009, late 2011, and early 2015 suggest the existence of an open-conduit system from the Aira caldera to the vents at the summit area of the Minamidake cone, through the sub reservoir beneath the older Kitadake cone. Ground deformation induced by sudden dike intrusion is different from that of previous intrusions, as revealed by the dense GNSS network. GNSS data are useful in evaluating and forecasting volcanic activity, and are available to grasp the advection and diffusion of volcanic ash.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


Sign in / Sign up

Export Citation Format

Share Document