scholarly journals Approximate and Exact Solutions to the Singular Nonlinear Heat Equation with a Common Type of Nonlinearity

Author(s):  
A. L. Kazakov ◽  
◽  
L. F. Spevak ◽  

The paper deals with the problem of the motion of a heat wave with a specified front for a general nonlinear parabolic heat equation. An unknown function depends on two variables. Along the heat wave front, the coefficient of thermal conductivity and the source function vanish, which leads to a degeneration of the parabolic type of the equation. This circumstance is the mathematical reason for the appearance of the considered solutions, which describe perturbations propagating along the zero background with a finite velocity. Such effects are generally atypical for parabolic equations. Previously, we proved the existence and uniqueness theorem for the problem considered in this paper. Still, it is local and does not allow us to study the properties of the solution beyond the small neighborhood of the heat wave front. To overcome this problem, the article proposes an iterative method for constructing an approximate solution for a given time interval, based on the boundary element approach. Since it is usually not possible to prove strict convergence theorems of approximate methods for nonlinear equations of mathematical physics with a singularity, verification of the calculation results is relevant. One of the traditional ways is to compare them with exact solutions. In this article, we obtain and study an exact solution of the required type, the construction of which is reduced to integrating the Cauchy problem for an ODE. We obtained some qualitative properties, including an interval estimation of the wave amplitude in one particular case. The performed calculations show the effectiveness of the developed computational algorithm, as well as the compliance of the results of calculations with qualitative analysis.

2009 ◽  
Vol 20 (02) ◽  
pp. 313-322
Author(s):  
PILWON KIM

Numerical schemes that are implemented by interpolation of exact solutions to a differential equation naturally preserve geometric properties of the differential equation. The solution interpolation method can be used for development of a new class of geometric integrators, which generally show better performances than standard method both quantitatively and qualitatively. Several examples including a linear convection equation and a nonlinear heat equation are included.


Author(s):  
A.F. Barannyk ◽  
◽  
T.A. Barannyk ◽  
I.I. Yuryk ◽  
◽  
...  

2018 ◽  
Vol 59 (3) ◽  
pp. 427-441 ◽  
Author(s):  
A. L. Kazakov ◽  
Sv. S. Orlov ◽  
S. S. Orlov

Author(s):  
Alexander L. Kazakov ◽  
Lev F. Spevak ◽  
Ming-Gong Lee

The construction of solutions to the problem with a free boundary for the non-linear heat equation which have the heat wave type is considered in the paper. The feature of such solutions is that the degeneration occurs on the front of the heat wave which separates the domain of positive values of the unknown function and the cold (zero) background. A numerical algorithm based on the boundary element method is proposed. Since it is difficult to prove the convergence of the algorithm due to the non-linearity of the problem and the presence of degeneracy the comparison with exact solutions is used to verify numerical results. The construction of exact solutions is reduced to integrating the Cauchy problem for ODE. A qualitative analysis of the exact solutions is carried out. Several computational experiments were performed to verify the proposed method


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Weimin Zhang

We study a kind of nonlinear heat equation with temperature-dependent thermal properties by the aid of the extended Tanh method and the Exp-function method. We obtain abundant new exact solutions of the equation. By comparing both of the methods, we find that the Exp-function method gives more solutions in this problem.


Sign in / Sign up

Export Citation Format

Share Document