scholarly journals On exact solutions of the nonlinear heat equation

Author(s):  
A.F. Barannyk ◽  
◽  
T.A. Barannyk ◽  
I.I. Yuryk ◽  
◽  
...  
2009 ◽  
Vol 20 (02) ◽  
pp. 313-322
Author(s):  
PILWON KIM

Numerical schemes that are implemented by interpolation of exact solutions to a differential equation naturally preserve geometric properties of the differential equation. The solution interpolation method can be used for development of a new class of geometric integrators, which generally show better performances than standard method both quantitatively and qualitatively. Several examples including a linear convection equation and a nonlinear heat equation are included.


2018 ◽  
Vol 59 (3) ◽  
pp. 427-441 ◽  
Author(s):  
A. L. Kazakov ◽  
Sv. S. Orlov ◽  
S. S. Orlov

Author(s):  
A. L. Kazakov ◽  
◽  
L. F. Spevak ◽  

The paper deals with the problem of the motion of a heat wave with a specified front for a general nonlinear parabolic heat equation. An unknown function depends on two variables. Along the heat wave front, the coefficient of thermal conductivity and the source function vanish, which leads to a degeneration of the parabolic type of the equation. This circumstance is the mathematical reason for the appearance of the considered solutions, which describe perturbations propagating along the zero background with a finite velocity. Such effects are generally atypical for parabolic equations. Previously, we proved the existence and uniqueness theorem for the problem considered in this paper. Still, it is local and does not allow us to study the properties of the solution beyond the small neighborhood of the heat wave front. To overcome this problem, the article proposes an iterative method for constructing an approximate solution for a given time interval, based on the boundary element approach. Since it is usually not possible to prove strict convergence theorems of approximate methods for nonlinear equations of mathematical physics with a singularity, verification of the calculation results is relevant. One of the traditional ways is to compare them with exact solutions. In this article, we obtain and study an exact solution of the required type, the construction of which is reduced to integrating the Cauchy problem for an ODE. We obtained some qualitative properties, including an interval estimation of the wave amplitude in one particular case. The performed calculations show the effectiveness of the developed computational algorithm, as well as the compliance of the results of calculations with qualitative analysis.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Weimin Zhang

We study a kind of nonlinear heat equation with temperature-dependent thermal properties by the aid of the extended Tanh method and the Exp-function method. We obtain abundant new exact solutions of the equation. By comparing both of the methods, we find that the Exp-function method gives more solutions in this problem.


2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


Sign in / Sign up

Export Citation Format

Share Document