scholarly journals The Extended Tanh Method and the Exp-Function Method to Solve a Kind of Nonlinear Heat Equation

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Weimin Zhang

We study a kind of nonlinear heat equation with temperature-dependent thermal properties by the aid of the extended Tanh method and the Exp-function method. We obtain abundant new exact solutions of the equation. By comparing both of the methods, we find that the Exp-function method gives more solutions in this problem.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Şamil Akçaği ◽  
Tuğba Aydemir

AbstractIn this paper, firstly, we give a connection between well known and commonly used methods called the $\left( {{{G'} \over G}} \right)$ -expansion method and the modified extended tanh method which are often used for finding exact solutions of nonlinear partial differential equations (NPDEs). We demonstrate that giving a convenient transformation and formula, all of the solutions obtained by using the $\left( {{{G'} \over G}} \right)$ - expansion method can be converted the solutions obtained by using the modified extended tanh method. Secondly, contrary to the assertion in some papers, the $\left( {{{G'} \over G}} \right)$-expansion method gives neither all of the solutions obtained by using the other method nor new solutions for NPDEs. Namely, while the modified extended tanh method gives more solutions in a straightforward, concise and elegant manner without reproducing a lot of different forms of the same solution. On the other hand, the $\left( {{{G'} \over G}} \right)$-expansion method provides less solutions in a rather cumbersome form. Lastly, we obtain new exact solutions for the Lonngren wave equation as an illustrative example by using these methods.


2009 ◽  
Vol 20 (02) ◽  
pp. 313-322
Author(s):  
PILWON KIM

Numerical schemes that are implemented by interpolation of exact solutions to a differential equation naturally preserve geometric properties of the differential equation. The solution interpolation method can be used for development of a new class of geometric integrators, which generally show better performances than standard method both quantitatively and qualitatively. Several examples including a linear convection equation and a nonlinear heat equation are included.


2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


Author(s):  
A.F. Barannyk ◽  
◽  
T.A. Barannyk ◽  
I.I. Yuryk ◽  
◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Gabriel Magalakwe ◽  
Chaudry Masood Khalique

We study a generalized double sinh-Gordon equation, which has applications in various fields, such as fluid dynamics, integrable quantum field theory, and kink dynamics. We employ the Exp-function method to obtain new exact solutions for this generalized double sinh-Gordon equation. This method is important as it gives us new solutions of the generalized double sinh-Gordon equation.


2019 ◽  
Vol 30 (6) ◽  
pp. 3083-3099
Author(s):  
Anna Ivanova ◽  
Stanislaw Migorski ◽  
Rafal Wyczolkowski ◽  
Dmitry Ivanov

Purpose This paper aims to considered the problem of identification of temperature-dependent thermal conductivity in the nonstationary, nonlinear heat equation. To describe the heat transfer in the furnace charge occupied by a homogeneous porous material, the heat equation is formulated. The inverse problem consists in finding the heat conductivity parameter, which depends on the temperature, from the measurements of the temperature in fixed points of the material. Design/methodology/approach A numerical method based on the finite-difference scheme and the least squares approach for numerical solution of the direct and inverse problems has been recently developed. Findings The influence of different numerical scheme parameters on the accuracy of the identified conductivity coefficient is studied. The results of the experiment carried out on real measurements are presented. Their results confirm the ones obtained earlier by using other methods. Originality/value Novelty is in a new, easy way to identify thermal conductivity by known temperature measurements. This method is based on special finite-difference scheme, which gives a resolvable system of algebraic equations. The results sensitivity on changes in the method parameters was studies. The algorithms of identification in the case of a purely mathematical experiment and in the case of real measurements, their differences and the practical details are presented.


2008 ◽  
Vol 63 (10-11) ◽  
pp. 646-652 ◽  
Author(s):  
Mohamed A Abdou ◽  
Essam M. Abulwafa

The Exp-function method with the aid of the symbolic computational system is used for constructing generalized solitary solutions of the generalized Riccati equation. Based on the Riccati equation and its generalized solitary solutions, new exact solutions with three arbitrary functions of quantum Zakharov equations are obtained. It is shown that the Exp-function method provides a straightforward and important mathematical tool for nonlinear evolution equations in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document